Author: rminnich
Date: 2008-08-03 21:36:53 +0200 (Sun, 03 Aug 2008)
New Revision: 715
Modified:
coreboot-v3/northbridge/amd/k8/raminit.c
Log:
This mostly compiles.
Also, per Uwe, remove the \r\n for \n
Signed-off-by: Ronald G. Minnich <rminnich(a)gmail.com>
Acked-by: Carl-Daniel Hailfinger <c-d.hailfinger.devel.2006(a)gmx.net>
Modified: coreboot-v3/northbridge/amd/k8/raminit.c
===================================================================
--- coreboot-v3/northbridge/amd/k8/raminit.c 2008-08-02 20:56:11 UTC (rev 714)
+++ coreboot-v3/northbridge/amd/k8/raminit.c 2008-08-03 19:36:53 UTC (rev 715)
@@ -52,7 +52,7 @@
struct device *dev;
unsigned where;
unsigned long reg;
- printk(BIOS_DEBUG, "%08x <- %08x\r\n", register_values[i], register_values[i+2]);
+ printk(BIOS_DEBUG, "%08x <- %08x\n", register_values[i], register_values[i+2]);
dev = register_values[i] & ~0xfff;
where = register_values[i] & 0xfff;
reg = pci_read_config32(dev, where);
@@ -61,7 +61,7 @@
pci_write_config32(dev, where, reg);
}
*/
- printk(BIOS_DEBUG, "done.\r\n");
+ printk(BIOS_DEBUG, "done.\n");
}
static int controller_present(const struct mem_controller *ctrl)
@@ -543,7 +543,7 @@
int max;
if (!controller_present(ctrl)) {
- printk(BIOS_DEBUG, "No memory controller present\r\n");
+ printk(BIOS_DEBUG, "No memory controller present\n");
return;
}
printk(BIOS_SPEW, "setting up CPU 0x%x northbridge registers ", ctrl->node_id);
@@ -552,7 +552,7 @@
struct device *dev;
unsigned where;
unsigned long reg;
- printk(BIOS_DEBUG, "%08x <- %08x\r\n", register_values[i], register_values[i+2]);
+ printk(BIOS_DEBUG, "%08x <- %08x\n", register_values[i], register_values[i+2]);
dev = (register_values[i] & ~0xfff) - PCI_BDF(0, 0x18, 0) + ctrl->f0;
where = register_values[i] & 0xfff;
reg = pci_read_config32(dev, where);
@@ -560,7 +560,7 @@
reg |= register_values[i+2];
pci_write_config32(dev, where, reg);
}
- printk(BIOS_SPEW, "done.\r\n");
+ printk(BIOS_SPEW, "done.\n");
}
@@ -695,7 +695,7 @@
goto out;
val_err:
- die("Bad SPD value\r\n");
+ die("Bad SPD value\n");
/* If an hw_error occurs report that I have no memory */
hw_err:
sz.side1 = 0;
@@ -857,7 +857,7 @@
limit_reg = 0x44 + index;
base_reg = 0x40 + index;
- for(device = PCI_DEV(0, 0x18, 1); device <= PCI_DEV(0, 0x1f, 1); device += PCI_DEV(0, 1, 0)) {
+ for(device = PCI_BDF(0, 0x18, 1); device <= PCI_BDF(0, 0x1f, 1); device += PCI_BDF(0, 1, 0)) {
pci_write_config32(device, limit_reg, limit);
pci_write_config32(device, base_reg, base);
}
@@ -871,12 +871,10 @@
}
/* Report the amount of memory. */
- print_spew("RAM: 0x");
- print_spew_hex32(tom_k);
- print_spew(" KB\r\n");
+ printk(BIOS_SPEW, "RAM: 0x%x KB\n", tom_k);
/* Now set top of memory */
- msr_t msr;
+ struct msr msr;
if(tom_k > (4*1024*1024)) {
msr.lo = (tom_k & 0x003fffff) << 10;
msr.hi = (tom_k & 0xffc00000) >> 22;
@@ -988,7 +986,7 @@
if(is_dual_channel(ctrl)) {
/* Also we run out of address mask bits if we try and interleave 8 4GB dimms */
if ((bits == 3) && (common_size == (1 << (32 - 3)))) {
-// printk(BIOS_DEBUG, "8 4GB chip selects cannot be interleaved\r\n");
+// printk(BIOS_DEBUG, "8 4GB chip selects cannot be interleaved\n");
return 0;
}
csbase_inc <<=1;
@@ -998,7 +996,7 @@
csbase_inc = 1 << csbase_low_d0_shift[common_cs_mode];
if(is_dual_channel(ctrl)) {
if( (bits==3) && (common_cs_mode > 8)) {
-// printk(BIOS_DEBUG, "8 cs_mode>8 chip selects cannot be interleaved\r\n");
+// printk(BIOS_DEBUG, "8 cs_mode>8 chip selects cannot be interleaved\n");
return 0;
}
csbase_inc <<=1;
@@ -1124,7 +1122,7 @@
if (read_option(CMOS_VSTART_interleave_chip_selects, CMOS_VLEN_interleave_chip_selects, 1) != 0) {
tom_k = interleave_chip_selects(ctrl);
} else {
- printk(BIOS_DEBUG, "Interleaving disabled\r\n");
+ printk(BIOS_DEBUG, "Interleaving disabled\n");
tom_k = 0;
}
if (!tom_k) {
@@ -1195,9 +1193,9 @@
}
pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
if (is_registered(ctrl)) {
- printk(BIOS_DEBUG, "Registered\r\n");
+ printk(BIOS_DEBUG, "Registered\n");
} else {
- printk(BIOS_DEBUG, "Unbuffered\r\n");
+ printk(BIOS_DEBUG, "Unbuffered\n");
}
return dimm_mask;
}
@@ -1291,7 +1289,7 @@
}
}
}
- printk(BIOS_SPEW, "Enabling dual channel memory\r\n");
+ printk(BIOS_SPEW, "Enabling dual channel memory\n");
u32 dcl;
dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
dcl &= ~DCL_32ByteEn;
@@ -1321,7 +1319,7 @@
{
static const struct mem_param speed[] = {
{
- .name = "100Mhz\r\n",
+ .name = "100Mhz\n",
.cycle_time = 0xa0,
.divisor = (10 <<1),
.tRC = 0x46,
@@ -1335,7 +1333,7 @@
.rdpreamble = { ((9 << 1) + 0), ((9 << 1) + 0), ((9 << 1) + 0), ((9 << 1) + 0) }
},
{
- .name = "133Mhz\r\n",
+ .name = "133Mhz\n",
.cycle_time = 0x75,
.divisor = (7<<1)+1,
.tRC = 0x41,
@@ -1349,7 +1347,7 @@
.rdpreamble = { ((8 << 1) + 0), ((7 << 1) + 0), ((7 << 1) + 1), ((7 << 1) + 0) }
},
{
- .name = "166Mhz\r\n",
+ .name = "166Mhz\n",
.cycle_time = 0x60,
.divisor = (6<<1),
.tRC = 0x3C,
@@ -1363,7 +1361,7 @@
.rdpreamble = { ((7 << 1) + 1), ((6 << 1) + 0), ((6 << 1) + 1), ((6 << 1) + 0) }
},
{
- .name = "200Mhz\r\n",
+ .name = "200Mhz\n",
.cycle_time = 0x50,
.divisor = (5<<1),
.tRC = 0x37,
@@ -1389,7 +1387,7 @@
if (!param->cycle_time) {
die("min_cycle_time to low");
}
- print_spew(param->name);
+ printk(BIOS_SPEW, param->name);
#ifdef DRAM_MIN_CYCLE_TIME
printk(BIOS_DEBUG, param->name);
#endif
@@ -1914,7 +1912,7 @@
clocks = param->dtl_trwt[lat][mtype];
if ((clocks < DTH_TRWT_MIN) || (clocks > DTH_TRWT_MAX)) {
- die("Unknown Trwt\r\n");
+ die("Unknown Trwt\n");
}
dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
@@ -2082,14 +2080,14 @@
const struct mem_param *param;
long dimm_mask;
if (!controller_present(ctrl)) {
- printk(BIOS_DEBUG, "No memory controller present\r\n");
+ printk(BIOS_DEBUG, "No memory controller present\n");
return;
}
hw_enable_ecc(ctrl);
activate_spd_rom(ctrl);
dimm_mask = spd_detect_dimms(ctrl);
if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
- printk(BIOS_DEBUG, "No memory for this cpu\r\n");
+ printk(BIOS_DEBUG, "No memory for this cpu\n");
return;
}
dimm_mask = spd_enable_2channels(ctrl, dimm_mask);
@@ -2113,7 +2111,7 @@
return;
hw_spd_err:
/* Unrecoverable error reading SPD data */
- print_err("SPD error - reset\r\n");
+ print_err("SPD error - reset\n");
hard_reset();
return;
}
@@ -2235,7 +2233,7 @@
/* Error if I don't have memory */
if (memory_end_k(ctrl, controllers) == 0) {
- die("No memory\r\n");
+ die("No memory\n");
}
/* Before enabling memory start the memory clocks */
@@ -2276,7 +2274,7 @@
dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
if (dcl & DCL_DimmEccEn) {
u32 mnc;
- print_spew("ECC enabled\r\n");
+ printk(BIOS_SPEW, "ECC enabled\n");
mnc = pci_read_config32(ctrl[i].f3, MCA_NB_CONFIG);
mnc |= MNC_ECC_EN;
if (dcl & DCL_128BitEn) {
@@ -2315,7 +2313,7 @@
}
} while(((dcl & DCL_DramInit) != 0) && (loops < TIMEOUT_LOOPS));
if (loops >= TIMEOUT_LOOPS) {
- printk(BIOS_DEBUG, " failed\r\n");
+ printk(BIOS_DEBUG, " failed\n");
continue;
}
@@ -2328,7 +2326,7 @@
} while(((dcl & DCL_MemClrStatus) == 0) || ((dcl & DCL_DramEnable) == 0) );
}
- printk(BIOS_DEBUG, " done\r\n");
+ printk(BIOS_DEBUG, " done\n");
}
#if HW_MEM_HOLE_SIZEK != 0
@@ -2361,10 +2359,10 @@
for(i=0;i<controllers; i++) {
ctrl = &ctrl_a[i];
ctrl->node_id = i;
- ctrl->f0 = PCI_DEV(0, 0x18+i, 0);
- ctrl->f1 = PCI_DEV(0, 0x18+i, 1);
- ctrl->f2 = PCI_DEV(0, 0x18+i, 2);
- ctrl->f3 = PCI_DEV(0, 0x18+i, 3);
+ ctrl->f0 = PCI_BDF(0, 0x18+i, 0);
+ ctrl->f1 = PCI_BDF(0, 0x18+i, 1);
+ ctrl->f2 = PCI_BDF(0, 0x18+i, 2);
+ ctrl->f3 = PCI_BDF(0, 0x18+i, 3);
if(spd_addr == (void *)0) continue;
@@ -2374,2383 +2372,3 @@
}
}
}
-#endif
-
-/*
- * This file is part of the coreboot project.
- *
- * Copyright (C) 2002 Linux Networx
- * (Written by Eric Biederman <ebiederman(a)lnxi.com> for Linux Networx)
- * Copyright (C) 2004 YingHai Lu
- * Copyright (C) 2007 Ronald G. Minnich <rminnich(a)gmail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; version 2 of the License.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
- */
-/* This should be done by Eric
- 2004.11 yhlu add 4 rank DIMM support
- 2004.12 yhlu add D0 support
- 2005.02 yhlu add E0 memory hole support
-*/
-/* not yet
-#if K8_REV_F_SUPPORT == 1
- #include "raminit_f.c"
-#else
- */
-
-#include <mem.h>
-#include <cache.h>
-#include <mtrr.h>
-#include "raminit.h"
-#include "k8.h"
-#include "sysconf.h"
-
-#ifndef QRANK_DIMM_SUPPORT
-#define QRANK_DIMM_SUPPORT 0
-#endif
-
-static void hard_reset(void);
-
-static void setup_resource_map(const unsigned int *register_values, int max)
-{
- int i;
- printk(BIOS_DEBUG, "setting up resource map....");
- for(i = 0; i < max; i += 3) {
- struct device *dev;
- unsigned where;
- unsigned long reg;
- printk(BIOS_DEBUG, "%08x <- %08x\r\n", register_values[i], register_values[i+2]);
- dev = register_values[i] & ~0xfff;
- where = register_values[i] & 0xfff;
- reg = pci_read_config32(dev, where);
- reg &= register_values[i+1];
- reg |= register_values[i+2];
- pci_write_config32(dev, where, reg);
- }
- printk(BIOS_DEBUG, "done.\r\n");
-}
-
-static int controller_present(const struct mem_controller *ctrl)
-{
- return pci_read_config32(ctrl->f0, 0) == 0x11001022;
-}
-
-static void sdram_set_registers(const struct mem_controller *ctrl)
-{
- static const unsigned int register_values[] = {
-
- /* Careful set limit registers before base registers which contain the enables */
- /* DRAM Limit i Registers
- * F1:0x44 i = 0
- * F1:0x4C i = 1
- * F1:0x54 i = 2
- * F1:0x5C i = 3
- * F1:0x64 i = 4
- * F1:0x6C i = 5
- * F1:0x74 i = 6
- * F1:0x7C i = 7
- * [ 2: 0] Destination Node ID
- * 000 = Node 0
- * 001 = Node 1
- * 010 = Node 2
- * 011 = Node 3
- * 100 = Node 4
- * 101 = Node 5
- * 110 = Node 6
- * 111 = Node 7
- * [ 7: 3] Reserved
- * [10: 8] Interleave select
- * specifies the values of A[14:12] to use with interleave enable.
- * [15:11] Reserved
- * [31:16] DRAM Limit Address i Bits 39-24
- * This field defines the upper address bits of a 40 bit address
- * that define the end of the DRAM region.
- */
- PCI_ADDR(0, 0x18, 1, 0x44), 0x0000f8f8, 0x00000000,
- PCI_ADDR(0, 0x18, 1, 0x4C), 0x0000f8f8, 0x00000001,
- PCI_ADDR(0, 0x18, 1, 0x54), 0x0000f8f8, 0x00000002,
- PCI_ADDR(0, 0x18, 1, 0x5C), 0x0000f8f8, 0x00000003,
- PCI_ADDR(0, 0x18, 1, 0x64), 0x0000f8f8, 0x00000004,
- PCI_ADDR(0, 0x18, 1, 0x6C), 0x0000f8f8, 0x00000005,
- PCI_ADDR(0, 0x18, 1, 0x74), 0x0000f8f8, 0x00000006,
- PCI_ADDR(0, 0x18, 1, 0x7C), 0x0000f8f8, 0x00000007,
- /* DRAM Base i Registers
- * F1:0x40 i = 0
- * F1:0x48 i = 1
- * F1:0x50 i = 2
- * F1:0x58 i = 3
- * F1:0x60 i = 4
- * F1:0x68 i = 5
- * F1:0x70 i = 6
- * F1:0x78 i = 7
- * [ 0: 0] Read Enable
- * 0 = Reads Disabled
- * 1 = Reads Enabled
- * [ 1: 1] Write Enable
- * 0 = Writes Disabled
- * 1 = Writes Enabled
- * [ 7: 2] Reserved
- * [10: 8] Interleave Enable
- * 000 = No interleave
- * 001 = Interleave on A[12] (2 nodes)
- * 010 = reserved
- * 011 = Interleave on A[12] and A[14] (4 nodes)
- * 100 = reserved
- * 101 = reserved
- * 110 = reserved
- * 111 = Interleve on A[12] and A[13] and A[14] (8 nodes)
- * [15:11] Reserved
- * [13:16] DRAM Base Address i Bits 39-24
- * This field defines the upper address bits of a 40-bit address
- * that define the start of the DRAM region.
- */
- PCI_ADDR(0, 0x18, 1, 0x40), 0x0000f8fc, 0x00000000,
- PCI_ADDR(0, 0x18, 1, 0x48), 0x0000f8fc, 0x00000000,
- PCI_ADDR(0, 0x18, 1, 0x50), 0x0000f8fc, 0x00000000,
- PCI_ADDR(0, 0x18, 1, 0x58), 0x0000f8fc, 0x00000000,
- PCI_ADDR(0, 0x18, 1, 0x60), 0x0000f8fc, 0x00000000,
- PCI_ADDR(0, 0x18, 1, 0x68), 0x0000f8fc, 0x00000000,
- PCI_ADDR(0, 0x18, 1, 0x70), 0x0000f8fc, 0x00000000,
- PCI_ADDR(0, 0x18, 1, 0x78), 0x0000f8fc, 0x00000000,
-
- /* DRAM CS Base Address i Registers
- * F2:0x40 i = 0
- * F2:0x44 i = 1
- * F2:0x48 i = 2
- * F2:0x4C i = 3
- * F2:0x50 i = 4
- * F2:0x54 i = 5
- * F2:0x58 i = 6
- * F2:0x5C i = 7
- * [ 0: 0] Chip-Select Bank Enable
- * 0 = Bank Disabled
- * 1 = Bank Enabled
- * [ 8: 1] Reserved
- * [15: 9] Base Address (19-13)
- * An optimization used when all DIMM are the same size...
- * [20:16] Reserved
- * [31:21] Base Address (35-25)
- * This field defines the top 11 addresses bit of a 40-bit
- * address that define the memory address space. These
- * bits decode 32-MByte blocks of memory.
- */
- PCI_ADDR(0, 0x18, 2, 0x40), 0x001f01fe, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x44), 0x001f01fe, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x48), 0x001f01fe, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x4C), 0x001f01fe, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x50), 0x001f01fe, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x54), 0x001f01fe, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x58), 0x001f01fe, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x5C), 0x001f01fe, 0x00000000,
- /* DRAM CS Mask Address i Registers
- * F2:0x60 i = 0
- * F2:0x64 i = 1
- * F2:0x68 i = 2
- * F2:0x6C i = 3
- * F2:0x70 i = 4
- * F2:0x74 i = 5
- * F2:0x78 i = 6
- * F2:0x7C i = 7
- * Select bits to exclude from comparison with the DRAM Base address register.
- * [ 8: 0] Reserved
- * [15: 9] Address Mask (19-13)
- * Address to be excluded from the optimized case
- * [20:16] Reserved
- * [29:21] Address Mask (33-25)
- * The bits with an address mask of 1 are excluded from address comparison
- * [31:30] Reserved
- *
- */
- PCI_ADDR(0, 0x18, 2, 0x60), 0xC01f01ff, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x64), 0xC01f01ff, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x68), 0xC01f01ff, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x6C), 0xC01f01ff, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x70), 0xC01f01ff, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x74), 0xC01f01ff, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x78), 0xC01f01ff, 0x00000000,
- PCI_ADDR(0, 0x18, 2, 0x7C), 0xC01f01ff, 0x00000000,
- /* DRAM Bank Address Mapping Register
- * F2:0x80
- * Specify the memory module size
- * [ 2: 0] CS1/0
- * [ 6: 4] CS3/2
- * [10: 8] CS5/4
- * [14:12] CS7/6
- * 000 = 32Mbyte (Rows = 12 & Col = 8)
- * 001 = 64Mbyte (Rows = 12 & Col = 9)
- * 010 = 128Mbyte (Rows = 13 & Col = 9)|(Rows = 12 & Col = 10)
- * 011 = 256Mbyte (Rows = 13 & Col = 10)|(Rows = 12 & Col = 11)
- * 100 = 512Mbyte (Rows = 13 & Col = 11)|(Rows = 14 & Col = 10)
- * 101 = 1Gbyte (Rows = 14 & Col = 11)|(Rows = 13 & Col = 12)
- * 110 = 2Gbyte (Rows = 14 & Col = 12)
- * 111 = reserved
- * [ 3: 3] Reserved
- * [ 7: 7] Reserved
- * [11:11] Reserved
- * [31:15]
- */
- PCI_ADDR(0, 0x18, 2, 0x80), 0xffff8888, 0x00000000,
- /* DRAM Timing Low Register
- * F2:0x88
- * [ 2: 0] Tcl (Cas# Latency, Cas# to read-data-valid)
- * 000 = reserved
- * 001 = CL 2
- * 010 = CL 3
- * 011 = reserved
- * 100 = reserved
- * 101 = CL 2.5
- * 110 = reserved
- * 111 = reserved
- * [ 3: 3] Reserved
- * [ 7: 4] Trc (Row Cycle Time, Ras#-active to Ras#-active/bank auto refresh)
- * 0000 = 7 bus clocks
- * 0001 = 8 bus clocks
- * ...
- * 1110 = 21 bus clocks
- * 1111 = 22 bus clocks
- * [11: 8] Trfc (Row refresh Cycle time, Auto-refresh-active to RAS#-active or RAS#auto-refresh)
- * 0000 = 9 bus clocks
- * 0010 = 10 bus clocks
- * ....
- * 1110 = 23 bus clocks
- * 1111 = 24 bus clocks
- * [14:12] Trcd (Ras#-active to Case#-read/write Delay)
- * 000 = reserved
- * 001 = reserved
- * 010 = 2 bus clocks
- * 011 = 3 bus clocks
- * 100 = 4 bus clocks
- * 101 = 5 bus clocks
- * 110 = 6 bus clocks
- * 111 = reserved
- * [15:15] Reserved
- * [18:16] Trrd (Ras# to Ras# Delay)
- * 000 = reserved
- * 001 = reserved
- * 010 = 2 bus clocks
- * 011 = 3 bus clocks
- * 100 = 4 bus clocks
- * 101 = reserved
- * 110 = reserved
- * 111 = reserved
- * [19:19] Reserved
- * [23:20] Tras (Minmum Ras# Active Time)
- * 0000 to 0100 = reserved
- * 0101 = 5 bus clocks
- * ...
- * 1111 = 15 bus clocks
- * [26:24] Trp (Row Precharge Time)
- * 000 = reserved
- * 001 = reserved
- * 010 = 2 bus clocks
- * 011 = 3 bus clocks
- * 100 = 4 bus clocks
- * 101 = 5 bus clocks
- * 110 = 6 bus clocks
- * 111 = reserved
- * [27:27] Reserved
- * [28:28] Twr (Write Recovery Time)
- * 0 = 2 bus clocks
- * 1 = 3 bus clocks
- * [31:29] Reserved
- */
- PCI_ADDR(0, 0x18, 2, 0x88), 0xe8088008, 0x02522001 /* 0x03623125 */ ,
- /* DRAM Timing High Register
- * F2:0x8C
- * [ 0: 0] Twtr (Write to Read Delay)
- * 0 = 1 bus Clocks
- * 1 = 2 bus Clocks
- * [ 3: 1] Reserved
- * [ 6: 4] Trwt (Read to Write Delay)
- * 000 = 1 bus clocks
- * 001 = 2 bus clocks
- * 010 = 3 bus clocks
- * 011 = 4 bus clocks
- * 100 = 5 bus clocks
- * 101 = 6 bus clocks
- * 110 = reserved
- * 111 = reserved
- * [ 7: 7] Reserved
- * [12: 8] Tref (Refresh Rate)
- * 00000 = 100Mhz 4K rows
- * 00001 = 133Mhz 4K rows
- * 00010 = 166Mhz 4K rows
- * 00011 = 200Mhz 4K rows
- * 01000 = 100Mhz 8K/16K rows
- * 01001 = 133Mhz 8K/16K rows
- * 01010 = 166Mhz 8K/16K rows
- * 01011 = 200Mhz 8K/16K rows
- * [19:13] Reserved
- * [22:20] Twcl (Write CAS Latency)
- * 000 = 1 Mem clock after CAS# (Unbuffered Dimms)
- * 001 = 2 Mem clocks after CAS# (Registered Dimms)
- * [31:23] Reserved
- */
- PCI_ADDR(0, 0x18, 2, 0x8c), 0xff8fe08e, (0 << 20)|(0 << 8)|(0 << 4)|(0 << 0),
- /* DRAM Config Low Register
- * F2:0x90
- * [ 0: 0] DLL Disable
- * 0 = Enabled
- * 1 = Disabled
- * [ 1: 1] D_DRV
- * 0 = Normal Drive
- * 1 = Weak Drive
- * [ 2: 2] QFC_EN
- * 0 = Disabled
- * 1 = Enabled
- * [ 3: 3] Disable DQS Hystersis (FIXME handle this one carefully)
- * 0 = Enable DQS input filter
- * 1 = Disable DQS input filtering
- * [ 7: 4] Reserved
- * [ 8: 8] DRAM_Init
- * 0 = Initialization done or not yet started.
- * 1 = Initiate DRAM intialization sequence
- * [ 9: 9] SO-Dimm Enable
- * 0 = Do nothing
- * 1 = SO-Dimms present
- * [10:10] DramEnable
- * 0 = DRAM not enabled
- * 1 = DRAM initialized and enabled
- * [11:11] Memory Clear Status
- * 0 = Memory Clear function has not completed
- * 1 = Memory Clear function has completed
- * [12:12] Exit Self-Refresh
- * 0 = Exit from self-refresh done or not yet started
- * 1 = DRAM exiting from self refresh
- * [13:13] Self-Refresh Status
- * 0 = Normal Operation
- * 1 = Self-refresh mode active
- * [15:14] Read/Write Queue Bypass Count
- * 00 = 2
- * 01 = 4
- * 10 = 8
- * 11 = 16
- * [16:16] 128-bit/64-Bit
- * 0 = 64bit Interface to DRAM
- * 1 = 128bit Interface to DRAM
- * [17:17] DIMM ECC Enable
- * 0 = Some DIMMs do not have ECC
- * 1 = ALL DIMMS have ECC bits
- * [18:18] UnBuffered DIMMs
- * 0 = Buffered DIMMS
- * 1 = Unbuffered DIMMS
- * [19:19] Enable 32-Byte Granularity
- * 0 = Optimize for 64byte bursts
- * 1 = Optimize for 32byte bursts
- * [20:20] DIMM 0 is x4
- * [21:21] DIMM 1 is x4
- * [22:22] DIMM 2 is x4
- * [23:23] DIMM 3 is x4
- * 0 = DIMM is not x4
- * 1 = x4 DIMM present
- * [24:24] Disable DRAM Receivers
- * 0 = Receivers enabled
- * 1 = Receivers disabled
- * [27:25] Bypass Max
- * 000 = Arbiters chois is always respected
- * 001 = Oldest entry in DCQ can be bypassed 1 time
- * 010 = Oldest entry in DCQ can be bypassed 2 times
- * 011 = Oldest entry in DCQ can be bypassed 3 times
- * 100 = Oldest entry in DCQ can be bypassed 4 times
- * 101 = Oldest entry in DCQ can be bypassed 5 times
- * 110 = Oldest entry in DCQ can be bypassed 6 times
- * 111 = Oldest entry in DCQ can be bypassed 7 times
- * [31:28] Reserved
- */
- PCI_ADDR(0, 0x18, 2, 0x90), 0xf0000000,
- (4 << 25)|(0 << 24)|
- (0 << 23)|(0 << 22)|(0 << 21)|(0 << 20)|
- (1 << 19)|(0 << 18)|(1 << 17)|(0 << 16)|
- (2 << 14)|(0 << 13)|(0 << 12)|
- (0 << 11)|(0 << 10)|(0 << 9)|(0 << 8)|
- (0 << 3) |(0 << 1) |(0 << 0),
- /* DRAM Config High Register
- * F2:0x94
- * [ 0: 3] Maximum Asynchronous Latency
- * 0000 = 0 ns
- * ...
- * 1111 = 15 ns
- * [ 7: 4] Reserved
- * [11: 8] Read Preamble
- * 0000 = 2.0 ns
- * 0001 = 2.5 ns
- * 0010 = 3.0 ns
- * 0011 = 3.5 ns
- * 0100 = 4.0 ns
- * 0101 = 4.5 ns
- * 0110 = 5.0 ns
- * 0111 = 5.5 ns
- * 1000 = 6.0 ns
- * 1001 = 6.5 ns
- * 1010 = 7.0 ns
- * 1011 = 7.5 ns
- * 1100 = 8.0 ns
- * 1101 = 8.5 ns
- * 1110 = 9.0 ns
- * 1111 = 9.5 ns
- * [15:12] Reserved
- * [18:16] Idle Cycle Limit
- * 000 = 0 cycles
- * 001 = 4 cycles
- * 010 = 8 cycles
- * 011 = 16 cycles
- * 100 = 32 cycles
- * 101 = 64 cycles
- * 110 = 128 cycles
- * 111 = 256 cycles
- * [19:19] Dynamic Idle Cycle Center Enable
- * 0 = Use Idle Cycle Limit
- * 1 = Generate a dynamic Idle cycle limit
- * [22:20] DRAM MEMCLK Frequency
- * 000 = 100Mhz
- * 001 = reserved
- * 010 = 133Mhz
- * 011 = reserved
- * 100 = reserved
- * 101 = 166Mhz
- * 110 = reserved
- * 111 = reserved
- * [24:23] Reserved
- * [25:25] Memory Clock Ratio Valid (FIXME carefully enable memclk)
- * 0 = Disable MemClks
- * 1 = Enable MemClks
- * [26:26] Memory Clock 0 Enable
- * 0 = Disabled
- * 1 = Enabled
- * [27:27] Memory Clock 1 Enable
- * 0 = Disabled
- * 1 = Enabled
- * [28:28] Memory Clock 2 Enable
- * 0 = Disabled
- * 1 = Enabled
- * [29:29] Memory Clock 3 Enable
- * 0 = Disabled
- * 1 = Enabled
- * [31:30] Reserved
- */
- PCI_ADDR(0, 0x18, 2, 0x94), 0xc180f0f0,
- (0 << 29)|(0 << 28)|(0 << 27)|(0 << 26)|(0 << 25)|
- (0 << 20)|(0 << 19)|(DCH_IDLE_LIMIT_16 << 16)|(0 << 8)|(0 << 0),
- /* DRAM Delay Line Register
- * F2:0x98
- * Adjust the skew of the input DQS strobe relative to DATA
- * [15: 0] Reserved
- * [23:16] Delay Line Adjust
- * Adjusts the DLL derived PDL delay by one or more delay stages
- * in either the faster or slower direction.
- * [24:24} Adjust Slower
- * 0 = Do Nothing
- * 1 = Adj is used to increase the PDL delay
- * [25:25] Adjust Faster
- * 0 = Do Nothing
- * 1 = Adj is used to decrease the PDL delay
- * [31:26] Reserved
- */
- PCI_ADDR(0, 0x18, 2, 0x98), 0xfc00ffff, 0x00000000,
- /* MCA NB Status Low reg */
- PCI_ADDR(0, 0x18, 3, 0x48), 0x00f00000, 0x00000000,
- /* MCA NB Status high reg */
- PCI_ADDR(0, 0x18, 3, 0x4c), 0x01801e8c, 0x00000000,
- /* MCA NB address Low reg */
- PCI_ADDR(0, 0x18, 3, 0x50), 0x00000007, 0x00000000,
- /* MCA NB address high reg */
- PCI_ADDR(0, 0x18, 3, 0x54), 0xffffff00, 0x00000000,
- /* DRAM Scrub Control Register
- * F3:0x58
- * [ 4: 0] DRAM Scrube Rate
- * [ 7: 5] reserved
- * [12: 8] L2 Scrub Rate
- * [15:13] reserved
- * [20:16] Dcache Scrub
- * [31:21] reserved
- * Scrub Rates
- * 00000 = Do not scrub
- * 00001 = 40.00 ns
- * 00010 = 80.00 ns
- * 00011 = 160.00 ns
- * 00100 = 320.00 ns
- * 00101 = 640.00 ns
- * 00110 = 1.28 us
- * 00111 = 2.56 us
- * 01000 = 5.12 us
- * 01001 = 10.20 us
- * 01011 = 41.00 us
- * 01100 = 81.90 us
- * 01101 = 163.80 us
- * 01110 = 327.70 us
- * 01111 = 655.40 us
- * 10000 = 1.31 ms
- * 10001 = 2.62 ms
- * 10010 = 5.24 ms
- * 10011 = 10.49 ms
- * 10100 = 20.97 ms
- * 10101 = 42.00 ms
- * 10110 = 84.00 ms
- * All Others = Reserved
- */
- PCI_ADDR(0, 0x18, 3, 0x58), 0xffe0e0e0, 0x00000000,
- /* DRAM Scrub Address Low Register
- * F3:0x5C
- * [ 0: 0] DRAM Scrubber Redirect Enable
- * 0 = Do nothing
- * 1 = Scrubber Corrects errors found in normal operation
- * [ 5: 1] Reserved
- * [31: 6] DRAM Scrub Address 31-6
- */
- PCI_ADDR(0, 0x18, 3, 0x5C), 0x0000003e, 0x00000000,
- /* DRAM Scrub Address High Register
- * F3:0x60
- * [ 7: 0] DRAM Scrubb Address 39-32
- * [31: 8] Reserved
- */
- PCI_ADDR(0, 0x18, 3, 0x60), 0xffffff00, 0x00000000,
- };
- int i;
- int max;
-
- if (!controller_present(ctrl)) {
- printk(BIOS_DEBUG, "No memory controller present\r\n");
- return;
- }
- printk(BIOS_SPEW, "setting up CPU 0x%x northbridge registers ", ctrl->node_id);
- max = sizeof(register_values)/sizeof(register_values[0]);
-/*
- for(i = 0; i < max; i += 3) {
- struct device *dev;
- unsigned where;
- unsigned long reg;
- printk(BIOS_DEBUG, "%08x <- %08x\r\n", register_values[i], register_values[i+2]);
- dev = (register_values[i] & ~0xfff) - PCI_DEV(0, 0x18, 0) + ctrl->f0;
- where = register_values[i] & 0xfff;
- reg = pci_read_config32(dev, where);
- reg &= register_values[i+1];
- reg |= register_values[i+2];
- pci_write_config32(dev, where, reg);
- }
-*/
- printk(BIOS_SPEW, "done.\r\n");
-}
-
-
-static void hw_enable_ecc(const struct mem_controller *ctrl)
-{
- u32 dcl, nbcap;
- nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP);
- dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
- dcl &= ~DCL_DimmEccEn;
- if (nbcap & NBCAP_ECC) {
- dcl |= DCL_DimmEccEn;
- }
- if (read_option(CMOS_VSTART_ECC_memory, CMOS_VLEN_ECC_memory, 1) == 0) {
- dcl &= ~DCL_DimmEccEn;
- }
- pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
-
-}
-
-static int is_dual_channel(const struct mem_controller *ctrl)
-{
- u32 dcl;
- dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
- return dcl & DCL_128BitEn;
-}
-
-static int is_opteron(const struct mem_controller *ctrl)
-{
- /* Test to see if I am an Opteron.
- * FIXME Socket 939 based Athlon64 have dual channel capability,
- * too, so we need a better test for Opterons
- */
-#warning "FIXME: Implement a better test for Opterons"
- u32 nbcap;
- nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP);
- return !!(nbcap & NBCAP_128Bit);
-}
-
-static int is_registered(const struct mem_controller *ctrl)
-{
- /* Test to see if we are dealing with registered SDRAM.
- * If we are not registered we are unbuffered.
- * This function must be called after spd_handle_unbuffered_dimms.
- */
- u32 dcl;
- dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
- return !(dcl & DCL_UnBufDimm);
-}
-
-struct dimm_size {
- unsigned long side1;
- unsigned long side2;
- unsigned long rows;
- unsigned long col;
-#if QRANK_DIMM_SUPPORT == 1
- unsigned long rank;
-#endif
-};
-
-static struct dimm_size spd_get_dimm_size(unsigned device)
-{
- /* Calculate the log base 2 size of a DIMM in bits */
- struct dimm_size sz;
- int value, low;
- sz.side1 = 0;
- sz.side2 = 0;
- sz.rows = 0;
- sz.col = 0;
-#if QRANK_DIMM_SUPPORT == 1
- sz.rank = 0;
-#endif
-
- /* Note it might be easier to use byte 31 here, it has the DIMM size as
- * a multiple of 4MB. The way we do it now we can size both
- * sides of an assymetric dimm.
- */
- value = spd_read_byte(device, 3); /* rows */
- if (value < 0) goto hw_err;
- if ((value & 0xf) == 0) goto val_err;
- sz.side1 += value & 0xf;
- sz.rows = value & 0xf;
-
- value = spd_read_byte(device, 4); /* columns */
- if (value < 0) goto hw_err;
- if ((value & 0xf) == 0) goto val_err;
- sz.side1 += value & 0xf;
- sz.col = value & 0xf;
-
- value = spd_read_byte(device, 17); /* banks */
- if (value < 0) goto hw_err;
- if ((value & 0xff) == 0) goto val_err;
- sz.side1 += log2(value & 0xff);
-
- /* Get the module data width and convert it to a power of two */
- value = spd_read_byte(device, 7); /* (high byte) */
- if (value < 0) goto hw_err;
- value &= 0xff;
- value <<= 8;
-
- low = spd_read_byte(device, 6); /* (low byte) */
- if (low < 0) goto hw_err;
- value = value | (low & 0xff);
- if ((value != 72) && (value != 64)) goto val_err;
- sz.side1 += log2(value);
-
- /* side 2 */
- value = spd_read_byte(device, 5); /* number of physical banks */
- if (value < 0) goto hw_err;
- if (value == 1) goto out;
- if ((value != 2) && (value != 4 )) {
- goto val_err;
- }
-#if QRANK_DIMM_SUPPORT == 1
- sz.rank = value;
-#endif
-
- /* Start with the symmetrical case */
- sz.side2 = sz.side1;
-
- value = spd_read_byte(device, 3); /* rows */
- if (value < 0) goto hw_err;
- if ((value & 0xf0) == 0) goto out; /* If symmetrical we are done */
- sz.side2 -= (value & 0x0f); /* Subtract out rows on side 1 */
- sz.side2 += ((value >> 4) & 0x0f); /* Add in rows on side 2 */
-
- value = spd_read_byte(device, 4); /* columns */
- if (value < 0) goto hw_err;
- if ((value & 0xff) == 0) goto val_err;
- sz.side2 -= (value & 0x0f); /* Subtract out columns on side 1 */
- sz.side2 += ((value >> 4) & 0x0f); /* Add in columsn on side 2 */
-
- goto out;
-
- val_err:
- die("Bad SPD value\r\n");
- /* If an hw_error occurs report that I have no memory */
-hw_err:
- sz.side1 = 0;
- sz.side2 = 0;
- sz.rows = 0;
- sz.col = 0;
-#if QRANK_DIMM_SUPPORT == 1
- sz.rank = 0;
-#endif
- out:
- return sz;
-}
-
-
-static void set_dimm_size(const struct mem_controller *ctrl, struct dimm_size sz, unsigned index)
-{
- u32 base0, base1;
- u32 dch;
-
- if (sz.side1 != sz.side2) {
- sz.side2 = 0;
- }
-
- /* For each base register.
- * Place the dimm size in 32 MB quantities in the bits 31 - 21.
- * The initialize dimm size is in bits.
- * Set the base enable bit0.
- */
-
- base0 = base1 = 0;
-
- /* Make certain side1 of the dimm is at least 32MB */
- if (sz.side1 >= (25 +3)) {
- base0 = (1 << ((sz.side1 - (25 + 3)) + 21)) | 1;
- }
-
- /* Make certain side2 of the dimm is at least 32MB */
- if (sz.side2 >= (25 + 3)) {
- base1 = (1 << ((sz.side2 - (25 + 3)) + 21)) | 1;
- }
-
- /* Double the size if we are using dual channel memory */
- if (is_dual_channel(ctrl)) {
- base0 = (base0 << 1) | (base0 & 1);
- base1 = (base1 << 1) | (base1 & 1);
- }
-
- /* Clear the reserved bits */
- base0 &= ~0x001ffffe;
- base1 &= ~0x001ffffe;
-
- /* Set the appropriate DIMM base address register */
- pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+0)<<2), base0);
- pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+1)<<2), base1);
-#if QRANK_DIMM_SUPPORT == 1
- if(sz.rank == 4) {
- pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+4)<<2), base0);
- pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+5)<<2), base1);
- }
-#endif
-
- /* Enable the memory clocks for this DIMM */
- if (base0) {
- dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
- dch |= DCH_MEMCLK_EN0 << index;
-#if QRANK_DIMM_SUPPORT == 1
- if(sz.rank == 4) {
- dch |= DCH_MEMCLK_EN0 << (index + 2);
- }
-#endif
- pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch);
- }
-}
-
-static void set_dimm_map(const struct mem_controller *ctrl, struct dimm_size sz, unsigned index)
-{
- static const unsigned cs_map_aa[] = {
- /* (row=12, col=8)(14, 12) ---> (0, 0) (2, 4) */
- 0, 1, 3, 6, 0,
- 0, 2, 4, 7, 9,
- 0, 0, 5, 8,10,
- };
-
- u32 map;
- u32 dch;
-
- map = pci_read_config32(ctrl->f2, DRAM_BANK_ADDR_MAP);
- map &= ~(0xf << (index * 4));
-#if QRANK_DIMM_SUPPORT == 1
- if(sz.rank == 4) {
- map &= ~(0xf << ( (index + 2) * 4));
- }
-#endif
-
-
- /* Make certain side1 of the dimm is at least 32MB */
- if (sz.side1 >= (25 +3)) {
- if(is_cpu_pre_d0()) {
- map |= (sz.side1 - (25 + 3)) << (index *4);
-#if QRANK_DIMM_SUPPORT == 1
- if(sz.rank == 4) {
- map |= (sz.side1 - (25 + 3)) << ( (index + 2) * 4);
- }
-#endif
- }
- else {
- map |= cs_map_aa[(sz.rows - 12) * 5 + (sz.col - 8) ] << (index*4);
-#if QRANK_DIMM_SUPPORT == 1
- if(sz.rank == 4) {
- map |= cs_map_aa[(sz.rows - 12) * 5 + (sz.col - 8) ] << ( (index + 2) * 4);
- }
-#endif
- }
- }
-
- pci_write_config32(ctrl->f2, DRAM_BANK_ADDR_MAP, map);
-
-}
-
-static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
-{
- int i;
-
- for(i = 0; i < DIMM_SOCKETS; i++) {
- struct dimm_size sz;
- if (!(dimm_mask & (1 << i))) {
- continue;
- }
- sz = spd_get_dimm_size(ctrl->channel0[i]);
- if (sz.side1 == 0) {
- return -1; /* Report SPD error */
- }
- set_dimm_size(ctrl, sz, i);
- set_dimm_map (ctrl, sz, i);
- }
- return dimm_mask;
-}
-
-static void route_dram_accesses(const struct mem_controller *ctrl,
- unsigned long base_k, unsigned long limit_k)
-{
- /* Route the addresses to the controller node */
- unsigned node_id;
- unsigned limit;
- unsigned base;
- unsigned index;
- unsigned limit_reg, base_reg;
- struct device *device;
-
- node_id = ctrl->node_id;
- index = (node_id << 3);
- limit = (limit_k << 2);
- limit &= 0xffff0000;
- limit -= 0x00010000;
- limit |= ( 0 << 8) | (node_id << 0);
- base = (base_k << 2);
- base &= 0xffff0000;
- base |= (0 << 8) | (1<<1) | (1<<0);
-
- limit_reg = 0x44 + index;
- base_reg = 0x40 + index;
- for(device = PCI_DEV(0, 0x18, 1); device <= PCI_DEV(0, 0x1f, 1); device += PCI_DEV(0, 1, 0)) {
- pci_write_config32(device, limit_reg, limit);
- pci_write_config32(device, base_reg, base);
- }
-}
-
-static void set_top_mem(unsigned tom_k, unsigned hole_startk)
-{
- /* Error if I don't have memory */
- if (!tom_k) {
- die("No memory?");
- }
-
- /* Report the amount of memory. */
- print_spew("RAM: 0x");
- print_spew_hex32(tom_k);
- print_spew(" KB\r\n");
-
- /* Now set top of memory */
- msr_t msr;
- if(tom_k > (4*1024*1024)) {
- msr.lo = (tom_k & 0x003fffff) << 10;
- msr.hi = (tom_k & 0xffc00000) >> 22;
- wrmsr(TOP_MEM2, msr);
- }
-
- /* Leave a 64M hole between TOP_MEM and TOP_MEM2
- * so I can see my rom chip and other I/O devices.
- */
- if (tom_k >= 0x003f0000) {
-#if HW_MEM_HOLE_SIZEK != 0
- if(hole_startk != 0) {
- tom_k = hole_startk;
- } else
-#endif
- tom_k = 0x3f0000;
- }
- msr.lo = (tom_k & 0x003fffff) << 10;
- msr.hi = (tom_k & 0xffc00000) >> 22;
- wrmsr(TOP_MEM, msr);
-}
-
-static unsigned long interleave_chip_selects(const struct mem_controller *ctrl)
-{
- /* 35 - 25 */
- static const u8 csbase_low_shift[] = {
- /* 32MB */ (13 - 4),
- /* 64MB */ (14 - 4),
- /* 128MB */ (14 - 4),
- /* 256MB */ (15 - 4),
- /* 512MB */ (15 - 4),
- /* 1GB */ (16 - 4),
- /* 2GB */ (16 - 4),
- };
-
- static const u8 csbase_low_d0_shift[] = {
- /* 32MB */ (13 - 4),
- /* 64MB */ (14 - 4),
- /* 128MB */ (14 - 4),
- /* 128MB */ (15 - 4),
- /* 256MB */ (15 - 4),
- /* 512MB */ (15 - 4),
- /* 256MB */ (16 - 4),
- /* 512MB */ (16 - 4),
- /* 1GB */ (16 - 4),
- /* 1GB */ (17 - 4),
- /* 2GB */ (17 - 4),
- };
-
- /* cs_base_high is not changed */
-
- u32 csbase_inc;
- int chip_selects, index;
- int bits;
- unsigned common_size;
- unsigned common_cs_mode;
- u32 csbase, csmask;
-
- /* See if all of the memory chip selects are the same size
- * and if so count them.
- */
- chip_selects = 0;
- common_size = 0;
- common_cs_mode = 0;
- for(index = 0; index < 8; index++) {
- unsigned size;
- unsigned cs_mode;
- u32 value;
-
- value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2));
-
- /* Is it enabled? */
- if (!(value & 1)) {
- continue;
- }
- chip_selects++;
- size = value >> 21;
- if (common_size == 0) {
- common_size = size;
- }
- /* The size differed fail */
- if (common_size != size) {
- return 0;
- }
-
- value = pci_read_config32(ctrl->f2, DRAM_BANK_ADDR_MAP);
- cs_mode =( value >> ((index>>1)*4)) & 0xf;
- if(cs_mode == 0 ) continue;
- if(common_cs_mode == 0) {
- common_cs_mode = cs_mode;
- }
- /* The size differed fail */
- if(common_cs_mode != cs_mode) {
- return 0;
- }
- }
-
- /* Chip selects can only be interleaved when there is
- * more than one and their is a power of two of them.
- */
- bits = log2(chip_selects);
- if (((1 << bits) != chip_selects) || (bits < 1) || (bits > 3)) {
- return 0;
- }
-
- /* Find the bits of csbase that we need to interleave on */
- if(is_cpu_pre_d0()){
- csbase_inc = 1 << csbase_low_shift[common_cs_mode];
- if(is_dual_channel(ctrl)) {
- /* Also we run out of address mask bits if we try and interleave 8 4GB dimms */
- if ((bits == 3) && (common_size == (1 << (32 - 3)))) {
-// printk(BIOS_DEBUG, "8 4GB chip selects cannot be interleaved\r\n");
- return 0;
- }
- csbase_inc <<=1;
- }
- }
- else {
- csbase_inc = 1 << csbase_low_d0_shift[common_cs_mode];
- if(is_dual_channel(ctrl)) {
- if( (bits==3) && (common_cs_mode > 8)) {
-// printk(BIOS_DEBUG, "8 cs_mode>8 chip selects cannot be interleaved\r\n");
- return 0;
- }
- csbase_inc <<=1;
- }
- }
-
- /* Compute the initial values for csbase and csbask.
- * In csbase just set the enable bit and the base to zero.
- * In csmask set the mask bits for the size and page level interleave.
- */
- csbase = 0 | 1;
- csmask = (((common_size << bits) - 1) << 21);
- csmask |= 0xfe00 & ~((csbase_inc << bits) - csbase_inc);
- for(index = 0; index < 8; index++) {
- u32 value;
-
- value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2));
- /* Is it enabled? */
- if (!(value & 1)) {
- continue;
- }
- pci_write_config32(ctrl->f2, DRAM_CSBASE + (index << 2), csbase);
- pci_write_config32(ctrl->f2, DRAM_CSMASK + (index << 2), csmask);
- csbase += csbase_inc;
- }
-
- printk(BIOS_SPEW, "Interleaved\n");
-
- /* Return the memory size in K */
- return common_size << (15 + bits);
-}
-
-static unsigned long order_chip_selects(const struct mem_controller *ctrl)
-{
- unsigned long tom;
-
- /* Remember which registers we have used in the high 8 bits of tom */
- tom = 0;
- for(;;) {
- /* Find the largest remaining canidate */
- unsigned index, canidate;
- u32 csbase, csmask;
- unsigned size;
- csbase = 0;
- canidate = 0;
- for(index = 0; index < 8; index++) {
- u32 value;
- value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2));
-
- /* Is it enabled? */
- if (!(value & 1)) {
- continue;
- }
-
- /* Is it greater? */
- if (value <= csbase) {
- continue;
- }
-
- /* Has it already been selected */
- if (tom & (1 << (index + 24))) {
- continue;
- }
- /* I have a new canidate */
- csbase = value;
- canidate = index;
- }
- /* See if I have found a new canidate */
- if (csbase == 0) {
- break;
- }
-
- /* Remember the dimm size */
- size = csbase >> 21;
-
- /* Remember I have used this register */
- tom |= (1 << (canidate + 24));
-
- /* Recompute the cs base register value */
- csbase = (tom << 21) | 1;
-
- /* Increment the top of memory */
- tom += size;
-
- /* Compute the memory mask */
- csmask = ((size -1) << 21);
- csmask |= 0xfe00; /* For now don't optimize */
-
- /* Write the new base register */
- pci_write_config32(ctrl->f2, DRAM_CSBASE + (canidate << 2), csbase);
- /* Write the new mask register */
- pci_write_config32(ctrl->f2, DRAM_CSMASK + (canidate << 2), csmask);
-
- }
- /* Return the memory size in K */
- return (tom & ~0xff000000) << 15;
-}
-
-unsigned long memory_end_k(const struct mem_controller *ctrl, int max_node_id)
-{
- unsigned node_id;
- unsigned end_k;
- /* Find the last memory address used */
- end_k = 0;
- for(node_id = 0; node_id < max_node_id; node_id++) {
- u32 limit, base;
- unsigned index;
- index = node_id << 3;
- base = pci_read_config32(ctrl->f1, 0x40 + index);
- /* Only look at the limit if the base is enabled */
- if ((base & 3) == 3) {
- limit = pci_read_config32(ctrl->f1, 0x44 + index);
- end_k = ((limit + 0x00010000) & 0xffff0000) >> 2;
- }
- }
- return end_k;
-}
-
-static void order_dimms(const struct mem_controller *ctrl)
-{
- unsigned long tom_k, base_k;
-
- if (read_option(CMOS_VSTART_interleave_chip_selects, CMOS_VLEN_interleave_chip_selects, 1) != 0) {
- tom_k = interleave_chip_selects(ctrl);
- } else {
- printk(BIOS_DEBUG, "Interleaving disabled\r\n");
- tom_k = 0;
- }
- if (!tom_k) {
- tom_k = order_chip_selects(ctrl);
- }
- /* Compute the memory base address */
- base_k = memory_end_k(ctrl, ctrl->node_id);
- tom_k += base_k;
- route_dram_accesses(ctrl, base_k, tom_k);
- set_top_mem(tom_k, 0);
-}
-
-static long disable_dimm(const struct mem_controller *ctrl, unsigned index, long dimm_mask)
-{
- printk(BIOS_DEBUG, "disabling dimm 0x%x\n", index);
- pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+0)<<2), 0);
- pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+1)<<2), 0);
- dimm_mask &= ~(1 << index);
- return dimm_mask;
-}
-
-static long spd_handle_unbuffered_dimms(const struct mem_controller *ctrl, long dimm_mask)
-{
- int i;
- int registered;
- int unbuffered;
- int has_dualch = is_opteron(ctrl);
- u32 dcl;
- unbuffered = 0;
- registered = 0;
- for(i = 0; (i < DIMM_SOCKETS); i++) {
- int value;
- if (!(dimm_mask & (1 << i))) {
- continue;
- }
- value = spd_read_byte(ctrl->channel0[i], 21);
- if (value < 0) {
- return -1;
- }
- /* Registered dimm ? */
- if (value & (1 << 1)) {
- registered = 1;
- }
- /* Otherwise it must be an unbuffered dimm */
- else {
- unbuffered = 1;
- }
- }
- if (unbuffered && registered) {
- die("Mixed buffered and registered dimms not supported");
- }
-
- dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
- dcl &= ~DCL_UnBufDimm;
- if (unbuffered) {
- if ((has_dualch) && (!is_cpu_pre_d0())) {
- dcl |= DCL_UnBufDimm; /* set DCL_DualDIMMen too? */
-
- /* set DCL_En2T if you have non-equal DDR mem types! */
-
- if ((cpuid_eax(1) & 0x30) == 0x30) {
- /* CS[7:4] is copy of CS[3:0], should be set for 939 socket */
- dcl |= DCL_UpperCSMap;
- }
- } else {
- dcl |= DCL_UnBufDimm;
- }
- }
- pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
- if (is_registered(ctrl)) {
- printk(BIOS_DEBUG, "Registered\r\n");
- } else {
- printk(BIOS_DEBUG, "Unbuffered\r\n");
- }
- return dimm_mask;
-}
-
-static unsigned int spd_detect_dimms(const struct mem_controller *ctrl)
-{
- unsigned dimm_mask;
- int i;
- dimm_mask = 0;
- for(i = 0; i < DIMM_SOCKETS; i++) {
- int byte;
- unsigned device;
- device = ctrl->channel0[i];
- if (device) {
- byte = spd_read_byte(ctrl->channel0[i], 2); /* Type */
- if (byte == 7) {
- dimm_mask |= (1 << i);
- }
- }
- device = ctrl->channel1[i];
- if (device) {
- byte = spd_read_byte(ctrl->channel1[i], 2);
- if (byte == 7) {
- dimm_mask |= (1 << (i + DIMM_SOCKETS));
- }
- }
- }
- return dimm_mask;
-}
-
-static long spd_enable_2channels(const struct mem_controller *ctrl, long dimm_mask)
-{
- int i;
- u32 nbcap;
- /* SPD addresses to verify are identical */
- static const u8 addresses[] = {
- 2, /* Type should be DDR SDRAM */
- 3, /* *Row addresses */
- 4, /* *Column addresses */
- 5, /* *Physical Banks */
- 6, /* *Module Data Width low */
- 7, /* *Module Data Width high */
- 9, /* *Cycle time at highest CAS Latency CL=X */
- 11, /* *SDRAM Type */
- 13, /* *SDRAM Width */
- 17, /* *Logical Banks */
- 18, /* *Supported CAS Latencies */
- 21, /* *SDRAM Module Attributes */
- 23, /* *Cycle time at CAS Latnecy (CLX - 0.5) */
- 26, /* *Cycle time at CAS Latnecy (CLX - 1.0) */
- 27, /* *tRP Row precharge time */
- 28, /* *Minimum Row Active to Row Active Delay (tRRD) */
- 29, /* *tRCD RAS to CAS */
- 30, /* *tRAS Activate to Precharge */
- 41, /* *Minimum Active to Active/Auto Refresh Time(Trc) */
- 42, /* *Minimum Auto Refresh Command Time(Trfc) */
- };
- /* If the dimms are not in pairs do not do dual channels */
- if ((dimm_mask & ((1 << DIMM_SOCKETS) - 1)) !=
- ((dimm_mask >> DIMM_SOCKETS) & ((1 << DIMM_SOCKETS) - 1))) {
- goto single_channel;
- }
- /* If the cpu is not capable of doing dual channels don't do dual channels */
- nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP);
- if (!(nbcap & NBCAP_128Bit)) {
- goto single_channel;
- }
- for(i = 0; (i < 4) && (ctrl->channel0[i]); i++) {
- unsigned device0, device1;
- int value0, value1;
- int j;
- /* If I don't have a dimm skip this one */
- if (!(dimm_mask & (1 << i))) {
- continue;
- }
- device0 = ctrl->channel0[i];
- device1 = ctrl->channel1[i];
- for(j = 0; j < sizeof(addresses)/sizeof(addresses[0]); j++) {
- unsigned addr;
- addr = addresses[j];
- value0 = spd_read_byte(device0, addr);
- if (value0 < 0) {
- return -1;
- }
- value1 = spd_read_byte(device1, addr);
- if (value1 < 0) {
- return -1;
- }
- if (value0 != value1) {
- goto single_channel;
- }
- }
- }
- printk(BIOS_SPEW, "Enabling dual channel memory\r\n");
- u32 dcl;
- dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
- dcl &= ~DCL_32ByteEn;
- dcl |= DCL_128BitEn;
- pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
- return dimm_mask;
- single_channel:
- dimm_mask &= ~((1 << (DIMM_SOCKETS *2)) - (1 << DIMM_SOCKETS));
- return dimm_mask;
-}
-
-struct mem_param {
- u8 cycle_time;
- u8 divisor; /* In 1/2 ns increments */
- u8 tRC;
- u8 tRFC;
- u32 dch_memclk;
- u16 dch_tref4k, dch_tref8k;
- u8 dtl_twr;
- u8 dtl_twtr;
- u8 dtl_trwt[3][3]; /* first index is CAS_LAT 2/2.5/3 and 128/registered64/64 */
- u8 rdpreamble[4]; /* 0 is for registered, 1 for 1-2 DIMMS, 2 and 3 for 3 or 4 unreg dimm slots */
- char name[9];
-};
-
-static const struct mem_param *get_mem_param(unsigned min_cycle_time)
-{
- static const struct mem_param speed[] = {
- {
- .name = "100Mhz\r\n",
- .cycle_time = 0xa0,
- .divisor = (10 <<1),
- .tRC = 0x46,
- .tRFC = 0x50,
- .dch_memclk = DCH_MEMCLK_100MHZ << DCH_MEMCLK_SHIFT,
- .dch_tref4k = DTH_TREF_100MHZ_4K,
- .dch_tref8k = DTH_TREF_100MHZ_8K,
- .dtl_twr = 2,
- .dtl_twtr = 1,
- .dtl_trwt = { { 2, 2, 3 }, { 3, 3, 4 }, { 3, 3, 4 }},
- .rdpreamble = { ((9 << 1) + 0), ((9 << 1) + 0), ((9 << 1) + 0), ((9 << 1) + 0) }
- },
- {
- .name = "133Mhz\r\n",
- .cycle_time = 0x75,
- .divisor = (7<<1)+1,
- .tRC = 0x41,
- .tRFC = 0x4B,
- .dch_memclk = DCH_MEMCLK_133MHZ << DCH_MEMCLK_SHIFT,
- .dch_tref4k = DTH_TREF_133MHZ_4K,
- .dch_tref8k = DTH_TREF_133MHZ_8K,
- .dtl_twr = 2,
- .dtl_twtr = 1,
- .dtl_trwt = { { 2, 2, 3 }, { 3, 3, 4 }, { 3, 3, 4 }},
- .rdpreamble = { ((8 << 1) + 0), ((7 << 1) + 0), ((7 << 1) + 1), ((7 << 1) + 0) }
- },
- {
- .name = "166Mhz\r\n",
- .cycle_time = 0x60,
- .divisor = (6<<1),
- .tRC = 0x3C,
- .tRFC = 0x48,
- .dch_memclk = DCH_MEMCLK_166MHZ << DCH_MEMCLK_SHIFT,
- .dch_tref4k = DTH_TREF_166MHZ_4K,
- .dch_tref8k = DTH_TREF_166MHZ_8K,
- .dtl_twr = 3,
- .dtl_twtr = 1,
- .dtl_trwt = { { 3, 2, 3 }, { 3, 3, 4 }, { 4, 3, 4 }},
- .rdpreamble = { ((7 << 1) + 1), ((6 << 1) + 0), ((6 << 1) + 1), ((6 << 1) + 0) }
- },
- {
- .name = "200Mhz\r\n",
- .cycle_time = 0x50,
- .divisor = (5<<1),
- .tRC = 0x37,
- .tRFC = 0x46,
- .dch_memclk = DCH_MEMCLK_200MHZ << DCH_MEMCLK_SHIFT,
- .dch_tref4k = DTH_TREF_200MHZ_4K,
- .dch_tref8k = DTH_TREF_200MHZ_8K,
- .dtl_twr = 3,
- .dtl_twtr = 2,
- .dtl_trwt = { { 0, 2, 3 }, { 3, 3, 4 }, { 3, 3, 4 }},
- .rdpreamble = { ((7 << 1) + 0), ((5 << 1) + 0), ((5 << 1) + 1), ((5 << 1) + 1) }
- },
- {
- .cycle_time = 0x00,
- },
- };
- const struct mem_param *param;
- for(param = &speed[0]; param->cycle_time ; param++) {
- if (min_cycle_time > (param+1)->cycle_time) {
- break;
- }
- }
- if (!param->cycle_time) {
- die("min_cycle_time to low");
- }
- print_spew(param->name);
-#ifdef DRAM_MIN_CYCLE_TIME
- printk(BIOS_DEBUG, param->name);
-#endif
- return param;
-}
-
-struct spd_set_memclk_result {
- const struct mem_param *param;
- long dimm_mask;
-};
-static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller *ctrl, long dimm_mask)
-{
- /* Compute the minimum cycle time for these dimms */
- struct spd_set_memclk_result result;
- unsigned min_cycle_time, min_latency, bios_cycle_time;
- int i;
- u32 value;
-
- static const u8 latency_indicies[] = { 26, 23, 9 };
- static const unsigned char min_cycle_times[] = {
- [NBCAP_MEMCLK_200MHZ] = 0x50, /* 5ns */
- [NBCAP_MEMCLK_166MHZ] = 0x60, /* 6ns */
- [NBCAP_MEMCLK_133MHZ] = 0x75, /* 7.5ns */
- [NBCAP_MEMCLK_100MHZ] = 0xa0, /* 10ns */
- };
-
- value = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP);
-
- min_cycle_time = min_cycle_times[(value >> NBCAP_MEMCLK_SHIFT) & NBCAP_MEMCLK_MASK];
- bios_cycle_time = min_cycle_times[
- read_option(CMOS_VSTART_max_mem_clock, CMOS_VLEN_max_mem_clock, 0)];
- if (bios_cycle_time > min_cycle_time) {
- min_cycle_time = bios_cycle_time;
- }
- min_latency = 2;
-
- /* Compute the least latency with the fastest clock supported
- * by both the memory controller and the dimms.
- */
- for(i = 0; i < DIMM_SOCKETS; i++) {
- int new_cycle_time, new_latency;
- int index;
- int latencies;
- int latency;
-
- if (!(dimm_mask & (1 << i))) {
- continue;
- }
-
- /* First find the supported CAS latencies
- * Byte 18 for DDR SDRAM is interpreted:
- * bit 0 == CAS Latency = 1.0
- * bit 1 == CAS Latency = 1.5
- * bit 2 == CAS Latency = 2.0
- * bit 3 == CAS Latency = 2.5
- * bit 4 == CAS Latency = 3.0
- * bit 5 == CAS Latency = 3.5
- * bit 6 == TBD
- * bit 7 == TBD
- */
- new_cycle_time = 0xa0;
- new_latency = 5;
-
- latencies = spd_read_byte(ctrl->channel0[i], 18);
- if (latencies <= 0) continue;
-
- /* Compute the lowest cas latency supported */
- latency = log2(latencies) -2;
-
- /* Loop through and find a fast clock with a low latency */
- for(index = 0; index < 3; index++, latency++) {
- int value;
- if ((latency < 2) || (latency > 4) ||
- (!(latencies & (1 << latency)))) {
- continue;
- }
- value = spd_read_byte(ctrl->channel0[i], latency_indicies[index]);
- if (value < 0) {
- goto hw_error;
- }
-
- /* Only increase the latency if we decreas the clock */
- if ((value >= min_cycle_time) && (value < new_cycle_time)) {
- new_cycle_time = value;
- new_latency = latency;
- }
- }
- if (new_latency > 4){
- continue;
- }
- /* Does min_latency need to be increased? */
- if (new_cycle_time > min_cycle_time) {
- min_cycle_time = new_cycle_time;
- }
- /* Does min_cycle_time need to be increased? */
- if (new_latency > min_latency) {
- min_latency = new_latency;
- }
- }
- /* Make a second pass through the dimms and disable
- * any that cannot support the selected memclk and cas latency.
- */
-
- for(i = 0; (i < 4) && (ctrl->channel0[i]); i++) {
- int latencies;
- int latency;
- int index;
- int value;
- if (!(dimm_mask & (1 << i))) {
- continue;
- }
- latencies = spd_read_byte(ctrl->channel0[i], 18);
- if (latencies < 0) goto hw_error;
- if (latencies == 0) {
- goto dimm_err;
- }
-
- /* Compute the lowest cas latency supported */
- latency = log2(latencies) -2;
-
- /* Walk through searching for the selected latency */
- for(index = 0; index < 3; index++, latency++) {
- if (!(latencies & (1 << latency))) {
- continue;
- }
- if (latency == min_latency)
- break;
- }
- /* If I can't find the latency or my index is bad error */
- if ((latency != min_latency) || (index >= 3)) {
- goto dimm_err;
- }
-
- /* Read the min_cycle_time for this latency */
- value = spd_read_byte(ctrl->channel0[i], latency_indicies[index]);
- if (value < 0) goto hw_error;
-
- /* All is good if the selected clock speed
- * is what I need or slower.
- */
- if (value <= min_cycle_time) {
- continue;
- }
- /* Otherwise I have an error, disable the dimm */
- dimm_err:
- dimm_mask = disable_dimm(ctrl, i, dimm_mask);
- }
-#if 0
-//down speed for full load 4 rank support
-#if QRANK_DIMM_SUPPORT
- if(dimm_mask == (3|(3<<DIMM_SOCKETS)) ) {
- int ranks = 4;
- for(i = 0; (i < 4) && (ctrl->channel0[i]); i++) {
- int val;
- if (!(dimm_mask & (1 << i))) {
- continue;
- }
- val = spd_read_byte(ctrl->channel0[i], 5);
- if(val!=ranks) {
- ranks = val;
- break;
- }
- }
- if(ranks==4) {
- if(min_cycle_time <= 0x50 ) {
- min_cycle_time = 0x60;
- }
- }
-
- }
-#endif
-#endif
- /* Now that I know the minimum cycle time lookup the memory parameters */
- result.param = get_mem_param(min_cycle_time);
-
- /* Update DRAM Config High with our selected memory speed */
- value = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
- value &= ~(DCH_MEMCLK_MASK << DCH_MEMCLK_SHIFT);
-#if 0
- /* Improves DQS centering by correcting for case when core speed multiplier and MEMCLK speed
- * result in odd clock divisor, by selecting the next lowest memory speed, required only at DDR400
- * and higher speeds with certain DIMM loadings ---- cheating???*/
- if(!is_cpu_pre_e0()) {
- if(min_cycle_time==0x50) {
- value |= 1<<31;
- }
- }
-#endif
-
- value |= result.param->dch_memclk;
- pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, value);
-
- static const unsigned latencies[] = { DTL_CL_2, DTL_CL_2_5, DTL_CL_3 };
- /* Update DRAM Timing Low with our selected cas latency */
- value = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
- value &= ~(DTL_TCL_MASK << DTL_TCL_SHIFT);
- value |= latencies[min_latency - 2] << DTL_TCL_SHIFT;
- pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, value);
-
- result.dimm_mask = dimm_mask;
- return result;
- hw_error:
- result.param = (const struct mem_param *)0;
- result.dimm_mask = -1;
- return result;
-}
-
-
-static int update_dimm_Trc(const struct mem_controller *ctrl, const struct mem_param *param, int i)
-{
- unsigned clocks, old_clocks;
- u32 dtl;
- int value;
- value = spd_read_byte(ctrl->channel0[i], 41);
- if (value < 0) return -1;
- if ((value == 0) || (value == 0xff)) {
- value = param->tRC;
- }
- clocks = ((value << 1) + param->divisor - 1)/param->divisor;
- if (clocks < DTL_TRC_MIN) {
- clocks = DTL_TRC_MIN;
- }
- if (clocks > DTL_TRC_MAX) {
- return 0;
- }
-
- dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
- old_clocks = ((dtl >> DTL_TRC_SHIFT) & DTL_TRC_MASK) + DTL_TRC_BASE;
- if (old_clocks > clocks) {
- clocks = old_clocks;
- }
- dtl &= ~(DTL_TRC_MASK << DTL_TRC_SHIFT);
- dtl |= ((clocks - DTL_TRC_BASE) << DTL_TRC_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
- return 1;
-}
-
-static int update_dimm_Trfc(const struct mem_controller *ctrl, const struct mem_param *param, int i)
-{
- unsigned clocks, old_clocks;
- u32 dtl;
- int value;
- value = spd_read_byte(ctrl->channel0[i], 42);
- if (value < 0) return -1;
- if ((value == 0) || (value == 0xff)) {
- value = param->tRFC;
- }
- clocks = ((value << 1) + param->divisor - 1)/param->divisor;
- if (clocks < DTL_TRFC_MIN) {
- clocks = DTL_TRFC_MIN;
- }
- if (clocks > DTL_TRFC_MAX) {
- return 0;
- }
- dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
- old_clocks = ((dtl >> DTL_TRFC_SHIFT) & DTL_TRFC_MASK) + DTL_TRFC_BASE;
- if (old_clocks > clocks) {
- clocks = old_clocks;
- }
- dtl &= ~(DTL_TRFC_MASK << DTL_TRFC_SHIFT);
- dtl |= ((clocks - DTL_TRFC_BASE) << DTL_TRFC_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
- return 1;
-}
-
-
-static int update_dimm_Trcd(const struct mem_controller *ctrl, const struct mem_param *param, int i)
-{
- unsigned clocks, old_clocks;
- u32 dtl;
- int value;
- value = spd_read_byte(ctrl->channel0[i], 29);
- if (value < 0) return -1;
- clocks = (value + (param->divisor << 1) -1)/(param->divisor << 1);
- if (clocks < DTL_TRCD_MIN) {
- clocks = DTL_TRCD_MIN;
- }
- if (clocks > DTL_TRCD_MAX) {
- return 0;
- }
- dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
- old_clocks = ((dtl >> DTL_TRCD_SHIFT) & DTL_TRCD_MASK) + DTL_TRCD_BASE;
- if (old_clocks > clocks) {
- clocks = old_clocks;
- }
- dtl &= ~(DTL_TRCD_MASK << DTL_TRCD_SHIFT);
- dtl |= ((clocks - DTL_TRCD_BASE) << DTL_TRCD_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
- return 1;
-}
-
-static int update_dimm_Trrd(const struct mem_controller *ctrl, const struct mem_param *param, int i)
-{
- unsigned clocks, old_clocks;
- u32 dtl;
- int value;
- value = spd_read_byte(ctrl->channel0[i], 28);
- if (value < 0) return -1;
- clocks = (value + (param->divisor << 1) -1)/(param->divisor << 1);
- if (clocks < DTL_TRRD_MIN) {
- clocks = DTL_TRRD_MIN;
- }
- if (clocks > DTL_TRRD_MAX) {
- return 0;
- }
- dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
- old_clocks = ((dtl >> DTL_TRRD_SHIFT) & DTL_TRRD_MASK) + DTL_TRRD_BASE;
- if (old_clocks > clocks) {
- clocks = old_clocks;
- }
- dtl &= ~(DTL_TRRD_MASK << DTL_TRRD_SHIFT);
- dtl |= ((clocks - DTL_TRRD_BASE) << DTL_TRRD_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
- return 1;
-}
-
-static int update_dimm_Tras(const struct mem_controller *ctrl, const struct mem_param *param, int i)
-{
- unsigned clocks, old_clocks;
- u32 dtl;
- int value;
- value = spd_read_byte(ctrl->channel0[i], 30);
- if (value < 0) return -1;
- clocks = ((value << 1) + param->divisor - 1)/param->divisor;
- if (clocks < DTL_TRAS_MIN) {
- clocks = DTL_TRAS_MIN;
- }
- if (clocks > DTL_TRAS_MAX) {
- return 0;
- }
- dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
- old_clocks = ((dtl >> DTL_TRAS_SHIFT) & DTL_TRAS_MASK) + DTL_TRAS_BASE;
- if (old_clocks > clocks) {
- clocks = old_clocks;
- }
- dtl &= ~(DTL_TRAS_MASK << DTL_TRAS_SHIFT);
- dtl |= ((clocks - DTL_TRAS_BASE) << DTL_TRAS_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
- return 1;
-}
-
-static int update_dimm_Trp(const struct mem_controller *ctrl, const struct mem_param *param, int i)
-{
- unsigned clocks, old_clocks;
- u32 dtl;
- int value;
- value = spd_read_byte(ctrl->channel0[i], 27);
- if (value < 0) return -1;
- clocks = (value + (param->divisor << 1) - 1)/(param->divisor << 1);
- if (clocks < DTL_TRP_MIN) {
- clocks = DTL_TRP_MIN;
- }
- if (clocks > DTL_TRP_MAX) {
- return 0;
- }
- dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
- old_clocks = ((dtl >> DTL_TRP_SHIFT) & DTL_TRP_MASK) + DTL_TRP_BASE;
- if (old_clocks > clocks) {
- clocks = old_clocks;
- }
- dtl &= ~(DTL_TRP_MASK << DTL_TRP_SHIFT);
- dtl |= ((clocks - DTL_TRP_BASE) << DTL_TRP_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
- return 1;
-}
-
-static void set_Twr(const struct mem_controller *ctrl, const struct mem_param *param)
-{
- u32 dtl;
- dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
- dtl &= ~(DTL_TWR_MASK << DTL_TWR_SHIFT);
- dtl |= (param->dtl_twr - DTL_TWR_BASE) << DTL_TWR_SHIFT;
- pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
-}
-
-
-static void init_Tref(const struct mem_controller *ctrl, const struct mem_param *param)
-{
- u32 dth;
- dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
- dth &= ~(DTH_TREF_MASK << DTH_TREF_SHIFT);
- dth |= (param->dch_tref4k << DTH_TREF_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
-}
-
-static int update_dimm_Tref(const struct mem_controller *ctrl, const struct mem_param *param, int i)
-{
- u32 dth;
- int value;
- unsigned tref, old_tref;
- value = spd_read_byte(ctrl->channel0[i], 3);
- if (value < 0) return -1;
- value &= 0xf;
-
- tref = param->dch_tref8k;
- if (value == 12) {
- tref = param->dch_tref4k;
- }
-
- dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
- old_tref = (dth >> DTH_TREF_SHIFT) & DTH_TREF_MASK;
- if ((value == 12) && (old_tref == param->dch_tref4k)) {
- tref = param->dch_tref4k;
- } else {
- tref = param->dch_tref8k;
- }
- dth &= ~(DTH_TREF_MASK << DTH_TREF_SHIFT);
- dth |= (tref << DTH_TREF_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
- return 1;
-}
-
-
-static int update_dimm_x4(const struct mem_controller *ctrl, const struct mem_param *param, int i)
-{
- u32 dcl;
- int value;
-#if QRANK_DIMM_SUPPORT == 1
- int rank;
-#endif
- int dimm;
- value = spd_read_byte(ctrl->channel0[i], 13);
- if (value < 0) {
- return -1;
- }
-
-#if QRANK_DIMM_SUPPORT == 1
- rank = spd_read_byte(ctrl->channel0[i], 5); /* number of physical banks */
- if (rank < 0) {
- return -1;
- }
-#endif
-
- dimm = 1<<(DCL_x4DIMM_SHIFT+i);
-#if QRANK_DIMM_SUPPORT == 1
- if(rank==4) {
- dimm |= 1<<(DCL_x4DIMM_SHIFT+i+2);
- }
-#endif
- dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
- dcl &= ~dimm;
- if (value == 4) {
- dcl |= dimm;
- }
- pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
- return 1;
-}
-
-static int update_dimm_ecc(const struct mem_controller *ctrl, const struct mem_param *param, int i)
-{
- u32 dcl;
- int value;
- value = spd_read_byte(ctrl->channel0[i], 11);
- if (value < 0) {
- return -1;
- }
- if (value != 2) {
- dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
- dcl &= ~DCL_DimmEccEn;
- pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
- }
- return 1;
-}
-
-static int count_dimms(const struct mem_controller *ctrl)
-{
- int dimms;
- unsigned index;
- dimms = 0;
- for(index = 0; index < 8; index += 2) {
- u32 csbase;
- csbase = pci_read_config32(ctrl->f2, (DRAM_CSBASE + (index << 2)));
- if (csbase & 1) {
- dimms += 1;
- }
- }
- return dimms;
-}
-
-static void set_Twtr(const struct mem_controller *ctrl, const struct mem_param *param)
-{
- u32 dth;
-
- dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
- dth &= ~(DTH_TWTR_MASK << DTH_TWTR_SHIFT);
- dth |= ((param->dtl_twtr - DTH_TWTR_BASE) << DTH_TWTR_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
-}
-
-static void set_Trwt(const struct mem_controller *ctrl, const struct mem_param *param)
-{
- u32 dth, dtl;
- unsigned latency;
- unsigned clocks;
- int lat, mtype;
-
- clocks = 0;
- dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
- latency = (dtl >> DTL_TCL_SHIFT) & DTL_TCL_MASK;
-
- if (is_opteron(ctrl)) {
- mtype = 0; /* dual channel */
- } else if (is_registered(ctrl)) {
- mtype = 1; /* registered 64bit interface */
- } else {
- mtype = 2; /* unbuffered 64bit interface */
- }
-
- switch (latency) {
- case DTL_CL_2:
- lat = 0;
- break;
- case DTL_CL_2_5:
- lat = 1;
- break;
- case DTL_CL_3:
- lat = 2;
- break;
- default:
- die("Unknown LAT for Trwt");
- }
-
- clocks = param->dtl_trwt[lat][mtype];
- if ((clocks < DTH_TRWT_MIN) || (clocks > DTH_TRWT_MAX)) {
- die("Unknown Trwt\r\n");
- }
-
- dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
- dth &= ~(DTH_TRWT_MASK << DTH_TRWT_SHIFT);
- dth |= ((clocks - DTH_TRWT_BASE) << DTH_TRWT_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
- return;
-}
-
-static void set_Twcl(const struct mem_controller *ctrl, const struct mem_param *param)
-{
- /* Memory Clocks after CAS# */
- u32 dth;
- unsigned clocks;
- if (is_registered(ctrl)) {
- clocks = 2;
- } else {
- clocks = 1;
- }
- dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
- dth &= ~(DTH_TWCL_MASK << DTH_TWCL_SHIFT);
- dth |= ((clocks - DTH_TWCL_BASE) << DTH_TWCL_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
-}
-
-
-static void set_read_preamble(const struct mem_controller *ctrl, const struct mem_param *param)
-{
- u32 dch;
- unsigned rdpreamble;
- int slots, i;
-
- slots = 0;
-
- for(i = 0; i < 4; i++) {
- if (ctrl->channel0[i]) {
- slots += 1;
- }
- }
-
- /* map to index to param.rdpreamble array */
- if (is_registered(ctrl)) {
- i = 0;
- } else if (slots < 3) {
- i = 1;
- } else if (slots == 3) {
- i = 2;
- } else if (slots == 4) {
- i = 3;
- } else {
- die("Unknown rdpreamble for this nr of slots");
- }
-
- dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
- dch &= ~(DCH_RDPREAMBLE_MASK << DCH_RDPREAMBLE_SHIFT);
- rdpreamble = param->rdpreamble[i];
-
- if ((rdpreamble < DCH_RDPREAMBLE_MIN) || (rdpreamble > DCH_RDPREAMBLE_MAX)) {
- die("Unknown rdpreamble");
- }
-
- dch |= (rdpreamble - DCH_RDPREAMBLE_BASE) << DCH_RDPREAMBLE_SHIFT;
- pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch);
-}
-
-static void set_max_async_latency(const struct mem_controller *ctrl, const struct mem_param *param)
-{
- u32 dch;
- unsigned async_lat;
- int dimms;
-
- dimms = count_dimms(ctrl);
-
- dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
- dch &= ~(DCH_ASYNC_LAT_MASK << DCH_ASYNC_LAT_SHIFT);
- async_lat = 0;
- if (is_registered(ctrl)) {
- if (dimms == 4) {
- /* 9ns */
- async_lat = 9;
- }
- else {
- /* 8ns */
- async_lat = 8;
- }
- }
- else {
- if (dimms > 3) {
- die("Too many unbuffered dimms");
- }
- else if (dimms == 3) {
- /* 7ns */
- async_lat = 7;
- }
- else {
- /* 6ns */
- async_lat = 6;
- }
- }
- dch |= ((async_lat - DCH_ASYNC_LAT_BASE) << DCH_ASYNC_LAT_SHIFT);
- pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch);
-}
-
-static void set_idle_cycle_limit(const struct mem_controller *ctrl, const struct mem_param *param)
-{
- u32 dch;
- /* AMD says to Hardcode this */
- dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
- dch &= ~(DCH_IDLE_LIMIT_MASK << DCH_IDLE_LIMIT_SHIFT);
- dch |= DCH_IDLE_LIMIT_16 << DCH_IDLE_LIMIT_SHIFT;
- dch |= DCH_DYN_IDLE_CTR_EN;
- pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch);
-}
-
-static long spd_set_dram_timing(const struct mem_controller *ctrl, const struct mem_param *param, long dimm_mask)
-{
- int i;
-
- init_Tref(ctrl, param);
- for(i = 0; i < DIMM_SOCKETS; i++) {
- int rc;
- if (!(dimm_mask & (1 << i))) {
- continue;
- }
- /* DRAM Timing Low Register */
- if ((rc = update_dimm_Trc (ctrl, param, i)) <= 0) goto dimm_err;
- if ((rc = update_dimm_Trfc(ctrl, param, i)) <= 0) goto dimm_err;
- if ((rc = update_dimm_Trcd(ctrl, param, i)) <= 0) goto dimm_err;
- if ((rc = update_dimm_Trrd(ctrl, param, i)) <= 0) goto dimm_err;
- if ((rc = update_dimm_Tras(ctrl, param, i)) <= 0) goto dimm_err;
- if ((rc = update_dimm_Trp (ctrl, param, i)) <= 0) goto dimm_err;
-
- /* DRAM Timing High Register */
- if ((rc = update_dimm_Tref(ctrl, param, i)) <= 0) goto dimm_err;
-
-
- /* DRAM Config Low */
- if ((rc = update_dimm_x4 (ctrl, param, i)) <= 0) goto dimm_err;
- if ((rc = update_dimm_ecc(ctrl, param, i)) <= 0) goto dimm_err;
- continue;
- dimm_err:
- if (rc < 0) {
- return -1;
- }
- dimm_mask = disable_dimm(ctrl, i, dimm_mask);
- }
- /* DRAM Timing Low Register */
- set_Twr(ctrl, param);
-
- /* DRAM Timing High Register */
- set_Twtr(ctrl, param);
- set_Trwt(ctrl, param);
- set_Twcl(ctrl, param);
-
- /* DRAM Config High */
- set_read_preamble(ctrl, param);
- set_max_async_latency(ctrl, param);
- set_idle_cycle_limit(ctrl, param);
- return dimm_mask;
-}
-
-static void sdram_set_spd_registers(const struct mem_controller *ctrl, struct sys_info *sysinfo)
-{
- struct spd_set_memclk_result result;
- const struct mem_param *param;
- long dimm_mask;
- if (!controller_present(ctrl)) {
- printk(BIOS_DEBUG, "No memory controller present\r\n");
- return;
- }
- hw_enable_ecc(ctrl);
- activate_spd_rom(ctrl);
- dimm_mask = spd_detect_dimms(ctrl);
- if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
- printk(BIOS_DEBUG, "No memory for this cpu\r\n");
- return;
- }
- dimm_mask = spd_enable_2channels(ctrl, dimm_mask);
- if (dimm_mask < 0)
- goto hw_spd_err;
- dimm_mask = spd_set_ram_size(ctrl , dimm_mask);
- if (dimm_mask < 0)
- goto hw_spd_err;
- dimm_mask = spd_handle_unbuffered_dimms(ctrl, dimm_mask);
- if (dimm_mask < 0)
- goto hw_spd_err;
- result = spd_set_memclk(ctrl, dimm_mask);
- param = result.param;
- dimm_mask = result.dimm_mask;
- if (dimm_mask < 0)
- goto hw_spd_err;
- dimm_mask = spd_set_dram_timing(ctrl, param , dimm_mask);
- if (dimm_mask < 0)
- goto hw_spd_err;
- order_dimms(ctrl);
- return;
- hw_spd_err:
- /* Unrecoverable error reading SPD data */
- print_err("SPD error - reset\r\n");
- hard_reset();
- return;
-}
-
-#if HW_MEM_HOLE_SIZEK != 0
-static u32 hoist_memory(int controllers, const struct mem_controller *ctrl,unsigned hole_startk, int i)
-{
- int ii;
- u32 carry_over;
- struct device *dev;
- u32 base, limit;
- u32 basek;
- u32 hoist;
- int j;
-
- carry_over = (4*1024*1024) - hole_startk;
-
- for(ii=controllers - 1;ii>i;ii--) {
- base = pci_read_config32(ctrl[0].f1, 0x40 + (ii << 3));
- if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) {
- continue;
- }
- limit = pci_read_config32(ctrl[0].f1, 0x44 + (ii << 3));
- for(j = 0; j < controllers; j++) {
- pci_write_config32(ctrl[j].f1, 0x44 + (ii << 3), limit + (carry_over << 2));
- pci_write_config32(ctrl[j].f1, 0x40 + (ii << 3), base + (carry_over << 2));
- }
- }
- limit = pci_read_config32(ctrl[0].f1, 0x44 + (i << 3));
- for(j = 0; j < controllers; j++) {
- pci_write_config32(ctrl[j].f1, 0x44 + (i << 3), limit + (carry_over << 2));
- }
- dev = ctrl[i].f1;
- base = pci_read_config32(dev, 0x40 + (i << 3));
- basek = (base & 0xffff0000) >> 2;
- if(basek == hole_startk) {
- //don't need set memhole here, because hole off set will be 0, overflow
- //so need to change base reg instead, new basek will be 4*1024*1024
- base &= 0x0000ffff;
- base |= (4*1024*1024)<<2;
- for(j = 0; j < controllers; j++) {
- pci_write_config32(ctrl[j].f1, 0x40 + (i<<3), base);
- }
- }
- else {
- hoist = /* hole start address */
- ((hole_startk << 10) & 0xff000000) +
- /* hole address to memory controller address */
- (((basek + carry_over) >> 6) & 0x0000ff00) +
- /* enable */
- 1;
- pci_write_config32(dev, 0xf0, hoist);
- }
-
- return carry_over;
-}
-
-static void set_hw_mem_hole(int controllers, const struct mem_controller *ctrl)
-{
-
- u32 hole_startk;
- int i;
-
- hole_startk = 4*1024*1024 - HW_MEM_HOLE_SIZEK;
-
-#if HW_MEM_HOLE_SIZE_AUTO_INC == 1
- /* We need to double check if hole_startk is valid.
- * If it is equal to the dram base address in K (base_k),
- * we need to decrease it.
- */
- u32 basek_pri;
- for(i=0; i<controllers; i++) {
- u32 base;
- unsigned base_k;
- base = pci_read_config32(ctrl[0].f1, 0x40 + (i << 3));
- if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) {
- continue;
- }
- base_k = (base & 0xffff0000) >> 2;
- if(base_k == hole_startk) {
- /* decrease memory hole startk to make sure it is
- * in the middle of the previous node
- */
- hole_startk -= (base_k - basek_pri)>>1;
- break; /* only one hole */
- }
- basek_pri = base_k;
- }
-
-#endif
- /* Find node number that needs the memory hole configured */
- for(i=0; i<controllers; i++) {
- u32 base, limit;
- unsigned base_k, limit_k;
- base = pci_read_config32(ctrl[0].f1, 0x40 + (i << 3));
- if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) {
- continue;
- }
- limit = pci_read_config32(ctrl[0].f1, 0x44 + (i << 3));
- base_k = (base & 0xffff0000) >> 2;
- limit_k = ((limit + 0x00010000) & 0xffff0000) >> 2;
- if ((base_k <= hole_startk) && (limit_k > hole_startk)) {
- unsigned end_k;
- hoist_memory(controllers, ctrl, hole_startk, i);
- end_k = memory_end_k(ctrl, controllers);
- set_top_mem(end_k, hole_startk);
- break; /* only one hole */
- }
- }
-
-}
-
-#endif
-
-#define TIMEOUT_LOOPS 300000
-static void sdram_enable(int controllers, const struct mem_controller *ctrl, struct sys_info *sysinfo)
-{
- int i;
-
- /* Error if I don't have memory */
- if (memory_end_k(ctrl, controllers) == 0) {
- die("No memory\r\n");
- }
-
- /* Before enabling memory start the memory clocks */
- for(i = 0; i < controllers; i++) {
- u32 dch;
- if (!controller_present(ctrl + i))
- continue;
- dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH);
- if (dch & (DCH_MEMCLK_EN0|DCH_MEMCLK_EN1|DCH_MEMCLK_EN2|DCH_MEMCLK_EN3)) {
- dch |= DCH_MEMCLK_VALID;
- pci_write_config32(ctrl[i].f2, DRAM_CONFIG_HIGH, dch);
- }
- else {
- /* Disable dram receivers */
- u32 dcl;
- dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
- dcl |= DCL_DisInRcvrs;
- pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
- }
- }
-
- /* And if necessary toggle the the reset on the dimms by hand */
- memreset(controllers, ctrl);
-
- /* We need to wait a mimmium of 20 MEMCLKS to enable the InitDram */
-
- for(i = 0; i < controllers; i++) {
- u32 dcl, dch;
- if (!controller_present(ctrl + i))
- continue;
- /* Skip everything if I don't have any memory on this controller */
- dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH);
- if (!(dch & DCH_MEMCLK_VALID)) {
- continue;
- }
-
- /* Toggle DisDqsHys to get it working */
- dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
- if (dcl & DCL_DimmEccEn) {
- u32 mnc;
- print_spew("ECC enabled\r\n");
- mnc = pci_read_config32(ctrl[i].f3, MCA_NB_CONFIG);
- mnc |= MNC_ECC_EN;
- if (dcl & DCL_128BitEn) {
- mnc |= MNC_CHIPKILL_EN;
- }
- pci_write_config32(ctrl[i].f3, MCA_NB_CONFIG, mnc);
- }
- dcl |= DCL_DisDqsHys;
- pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
- dcl &= ~DCL_DisDqsHys;
- dcl &= ~DCL_DLL_Disable;
- dcl &= ~DCL_D_DRV;
- dcl &= ~DCL_QFC_EN;
- dcl |= DCL_DramInit;
- pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
-
- }
- for(i = 0; i < controllers; i++) {
- u32 dcl, dch;
- if (!controller_present(ctrl + i))
- continue;
- /* Skip everything if I don't have any memory on this controller */
- dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH);
- if (!(dch & DCH_MEMCLK_VALID)) {
- continue;
- }
-
- printk(BIOS_DEBUG, "Initializing memory: ");
-
- int loops = 0;
- do {
- dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
- loops += 1;
- if ((loops & 1023) == 0) {
- printk(BIOS_DEBUG, ".");
- }
- } while(((dcl & DCL_DramInit) != 0) && (loops < TIMEOUT_LOOPS));
- if (loops >= TIMEOUT_LOOPS) {
- printk(BIOS_DEBUG, " failed\r\n");
- continue;
- }
-
- if (!is_cpu_pre_c0()) {
- /* Wait until it is safe to touch memory */
- dcl &= ~(DCL_MemClrStatus | DCL_DramEnable);
- pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
- do {
- dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
- } while(((dcl & DCL_MemClrStatus) == 0) || ((dcl & DCL_DramEnable) == 0) );
- }
-
- printk(BIOS_DEBUG, " done\r\n");
- }
-
-#if HW_MEM_HOLE_SIZEK != 0
- // init hw mem hole here
- /* DramHoleValid bit only can be set after MemClrStatus is set by Hardware */
- if(!is_cpu_pre_e0())
- set_hw_mem_hole(controllers, ctrl);
-#endif
-
- //FIXME add enable node interleaving here -- yhlu
- /*needed?
- 1. check how many nodes we have , if not all has ram installed get out
- 2. check cs_base lo is 0, node 0 f2 0x40,,,,, if any one is not using lo is CS_BASE, get out
- 3. check if other node is the same as node 0 about f2 0x40,,,,, otherwise get out
- 4. if all ready enable node_interleaving in f1 0x40..... of every node
- 5. for node interleaving we need to set mem hole to every node ( need recalcute hole offset in f0 for every node)
- */
-
-}
-
-static void set_sysinfo_in_ram(unsigned val)
-{
-}
-
-static void fill_mem_ctrl(int controllers, struct mem_controller *ctrl_a, const u16 *spd_addr)
-{
- int i;
- int j;
- struct mem_controller *ctrl;
- for(i=0;i<controllers; i++) {
- ctrl = &ctrl_a[i];
- ctrl->node_id = i;
- ctrl->f0 = PCI_DEV(0, 0x18+i, 0);
- ctrl->f1 = PCI_DEV(0, 0x18+i, 1);
- ctrl->f2 = PCI_DEV(0, 0x18+i, 2);
- ctrl->f3 = PCI_DEV(0, 0x18+i, 3);
-
- if(spd_addr == (void *)0) continue;
-
- for(j=0;j<DIMM_SOCKETS;j++) {
- ctrl->channel0[j] = spd_addr[(i*2+0)*DIMM_SOCKETS + j];
- ctrl->channel1[j] = spd_addr[(i*2+1)*DIMM_SOCKETS + j];
- }
- }
-}
-#endif
-