Arthur Heymans has uploaded this change for review.

View Change

cpu/x86/smm: Always use SMM_LOADER_VERSION2

This removes the old SMM_LOADER_VERSION1. The version 2 should now
work in all the cases version 1 supported.

This might need a bit more testing.

TODO: The save state handling inside the smihandler code is only
correct for the code that previously worked for V1. This needs to be
fixed for systems with a large amount of CPUs

Change-Id: If52e38ebd2baf4fc80d433e65626c537c0c1f1aa
Signed-off-by: Arthur Heymans <arthur@aheymans.xyz>
---
M src/cpu/x86/Kconfig
M src/cpu/x86/mp_init.c
M src/cpu/x86/smm/Makefile.inc
M src/cpu/x86/smm/smm_module_handler.c
M src/cpu/x86/smm/smm_module_loader.c
D src/cpu/x86/smm/smm_module_loaderv2.c
M src/include/cpu/x86/smm.h
7 files changed, 407 insertions(+), 846 deletions(-)

git pull ssh://review.coreboot.org:29418/coreboot refs/changes/73/47073/1
diff --git a/src/cpu/x86/Kconfig b/src/cpu/x86/Kconfig
index b3a16bc..5394cd0 100644
--- a/src/cpu/x86/Kconfig
+++ b/src/cpu/x86/Kconfig
@@ -121,14 +121,6 @@

endif

-config X86_SMM_LOADER_VERSION2
- bool
- default n
- depends on HAVE_SMI_HANDLER
- help
- This option enables SMM module loader that works with server
- platforms which may contain more than 32 CPU threads.
-
config SMM_LAPIC_REMAP_MITIGATION
bool
default y if NORTHBRIDGE_INTEL_I945
diff --git a/src/cpu/x86/mp_init.c b/src/cpu/x86/mp_init.c
index 3deab6d..f880c87 100644
--- a/src/cpu/x86/mp_init.c
+++ b/src/cpu/x86/mp_init.c
@@ -726,17 +726,12 @@
* the location of the new SMBASE. If using SMM modules then this
* calculation needs to match that of the module loader.
*/
-#if CONFIG(X86_SMM_LOADER_VERSION2)
perm_smbase = smm_get_cpu_smbase(cpu);
mp_state.perm_smbase = perm_smbase;
if (!perm_smbase) {
printk(BIOS_ERR, "%s: bad SMBASE for CPU %d\n", __func__, cpu);
return;
}
-#else
- perm_smbase = mp_state.perm_smbase;
- perm_smbase -= cpu * runtime->save_state_size;
-#endif

/* Setup code checks this callback for validity. */
printk(BIOS_INFO, "%s : curr_smbase 0x%x perm_smbase 0x%x, cpu = %d\n",
@@ -772,7 +767,7 @@
smm_stacks = memalign(16, num_cpus * CONFIG_SMM_STUB_STACK_SIZE);

if (smm_stacks == NULL) {
- printk(BIOS_ERR, "%s: failed to allocate stacks.\n");
+ printk(BIOS_ERR, "%s: failed to allocate stacks.\n", __func__);
return -1;
}

diff --git a/src/cpu/x86/smm/Makefile.inc b/src/cpu/x86/smm/Makefile.inc
index 1273a6c..dbe567a 100644
--- a/src/cpu/x86/smm/Makefile.inc
+++ b/src/cpu/x86/smm/Makefile.inc
@@ -1,10 +1,6 @@
## SPDX-License-Identifier: GPL-2.0-only

-ifeq ($(CONFIG_X86_SMM_LOADER_VERSION2),y)
-ramstage-y += smm_module_loaderv2.c
-else
ramstage-y += smm_module_loader.c
-endif
ramstage-y += smi_trigger.c

ifeq ($(CONFIG_ARCH_RAMSTAGE_X86_32),y)
diff --git a/src/cpu/x86/smm/smm_module_handler.c b/src/cpu/x86/smm/smm_module_handler.c
index 3ba5684..b6ef077 100644
--- a/src/cpu/x86/smm/smm_module_handler.c
+++ b/src/cpu/x86/smm/smm_module_handler.c
@@ -91,6 +91,7 @@

struct global_nvs *gnvs;

+/* TODO: handle multiple segments! */
void *smm_get_save_state(int cpu)
{
char *base;
diff --git a/src/cpu/x86/smm/smm_module_loader.c b/src/cpu/x86/smm/smm_module_loader.c
index 3c0ed7e..54e46d4 100644
--- a/src/cpu/x86/smm/smm_module_loader.c
+++ b/src/cpu/x86/smm/smm_module_loader.c
@@ -1,7 +1,7 @@
/* SPDX-License-Identifier: GPL-2.0-only */

+#include <stdint.h>
#include <string.h>
-#include <acpi/acpi_gnvs.h>
#include <rmodule.h>
#include <cpu/x86/smm.h>
#include <commonlib/helpers.h>
@@ -9,7 +9,7 @@
#include <security/intel/stm/SmmStm.h>

#define FXSAVE_SIZE 512
-
+#define SMM_CODE_SEGMENT_SIZE 0x10000
/* FXSAVE area during relocation. While it may not be strictly needed the
SMM stub code relies on the FXSAVE area being non-zero to enable SSE
instructions within SMM mode. */
@@ -47,65 +47,239 @@
/* Per CPU minimum stack size. */
#define SMM_MINIMUM_STACK_SIZE 32

+struct cpu_smm_info {
+ uint8_t active;
+ uintptr_t smbase;
+ uintptr_t entry;
+ uintptr_t ss_start;
+ uintptr_t code_start;
+ uintptr_t code_end;
+};
+struct cpu_smm_info cpus[CONFIG_MAX_CPUS] = { 0 };
+
/*
- * The smm_entry_ins consists of 3 bytes. It is used when staggering SMRAM entry
- * addresses across CPUs.
+ * This method creates a map of all the CPU entry points, save state locations
+ * and the beginning and end of code segments for each CPU. This map is used
+ * during relocation to properly align as many CPUs that can fit into the SMRAM
+ * region. For more information on how SMRAM works, refer to the latest Intel
+ * developer's manuals (volume 3, chapter 34). SMRAM is divided up into the
+ * following regions:
+ * +-----------------+ Top of SMRAM
+ * | | <- MSEG, FXSAVE
+ * +-----------------+
+ * | common |
+ * | smi handler | 64K
+ * | |
+ * +-----------------+
+ * | CPU 0 code seg |
+ * +-----------------+
+ * | CPU 1 code seg |
+ * +-----------------+
+ * | CPU x code seg |
+ * +-----------------+
+ * | |
+ * | |
+ * +-----------------+
+ * | stacks |
+ * +-----------------+ <- START of SMRAM
*
- * 0xe9 <16-bit relative target> ; jmp <relative-offset>
+ * The code below checks when a code segment is full and begins placing the remainder
+ * CPUs in the lower segments. The entry point for each CPU is smbase + 0x8000
+ * and save state is smbase + 0x8000 + (0x8000 - state save size). Save state
+ * area grows downward into the CPUs entry point. Therefore staggering too many
+ * CPUs in one 32K block will corrupt CPU0's entry code as the save states move
+ * downward.
+ * input : smbase of first CPU (all other CPUs
+ * will go below this address)
+ * input : num_cpus in the system. The map will
+ * be created from 0 to num_cpus.
*/
-struct smm_entry_ins {
- char jmp_rel;
- uint16_t rel16;
-} __packed;
-
-/*
- * Place the entry instructions for num entries beginning at entry_start with
- * a given stride. The entry_start is the highest entry point's address. All
- * other entry points are stride size below the previous.
- */
-static void smm_place_jmp_instructions(void *entry_start, size_t stride,
- size_t num, void *jmp_target)
+static int smm_create_map(uintptr_t smbase, unsigned int num_cpus,
+ const struct smm_loader_params *params)
{
- size_t i;
- char *cur;
- struct smm_entry_ins entry = { .jmp_rel = 0xe9 };
+ unsigned int i;
+ struct rmodule smm_stub;
+ unsigned int ss_size = params->per_cpu_save_state_size, stub_size;
+ unsigned int smm_entry_offset = params->smm_main_entry_offset;
+ unsigned int seg_count = 0, segments = 0, available;
+ unsigned int cpus_in_segment = 0;
+ unsigned int base = smbase;

- /* Each entry point has an IP value of 0x8000. The SMBASE for each
- * CPU is different so the effective address of the entry instruction
- * is different. Therefore, the relative displacement for each entry
- * instruction needs to be updated to reflect the current effective
- * IP. Additionally, the IP result from the jmp instruction is
- * calculated using the next instruction's address so the size of
- * the jmp instruction needs to be taken into account. */
- cur = entry_start;
- for (i = 0; i < num; i++) {
- uint32_t disp = (uintptr_t)jmp_target;
-
- disp -= sizeof(entry) + (uintptr_t)cur;
- printk(BIOS_DEBUG,
- "SMM Module: placing jmp sequence at %p rel16 0x%04x\n",
- cur, disp);
- entry.rel16 = disp;
- memcpy(cur, &entry, sizeof(entry));
- cur -= stride;
+ if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
+ printk(BIOS_ERR, "%s: unable to get SMM module size\n", __func__);
+ return 0;
}
+
+ stub_size = rmodule_memory_size(&smm_stub);
+ /* How many CPUs can fit into one 64K segment? */
+ available = 0xFFFF - smm_entry_offset - ss_size - stub_size;
+ if (available > 0) {
+ cpus_in_segment = available / ss_size;
+ /* minimum segments needed will always be 1 */
+ segments = num_cpus / cpus_in_segment + 1;
+ printk(BIOS_DEBUG,
+ "%s: cpus allowed in one segment %d\n", __func__, cpus_in_segment);
+ printk(BIOS_DEBUG,
+ "%s: min # of segments needed %d\n", __func__, segments);
+ } else {
+ printk(BIOS_ERR, "%s: not enough space in SMM to setup all CPUs\n", __func__);
+ printk(BIOS_ERR, " save state & stub size need to be reduced\n");
+ printk(BIOS_ERR, " or increase SMRAM size\n");
+ return 0;
+ }
+
+ if (sizeof(cpus) / sizeof(struct cpu_smm_info) < num_cpus) {
+ printk(BIOS_ERR,
+ "%s: increase MAX_CPUS in Kconfig\n", __func__);
+ return 0;
+ }
+
+ if (stub_size > ss_size) {
+ printk(BIOS_ERR, "%s: Save state larger than SMM stub size\n", __func__);
+ printk(BIOS_ERR, " Decrease stub size or increase the size allocated for the save state\n");
+ return 0;
+ }
+
+ for (i = 0; i < num_cpus; i++) {
+ cpus[i].smbase = base;
+ cpus[i].entry = base + smm_entry_offset;
+ cpus[i].ss_start = cpus[i].entry + (smm_entry_offset - ss_size);
+ cpus[i].code_start = cpus[i].entry;
+ cpus[i].code_end = cpus[i].entry + stub_size;
+ cpus[i].active = 1;
+ base -= ss_size;
+ seg_count++;
+ if (seg_count >= cpus_in_segment) {
+ base -= smm_entry_offset;
+ seg_count = 0;
+ }
+ }
+
+ if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) {
+ seg_count = 0;
+ for (i = 0; i < num_cpus; i++) {
+ printk(BIOS_DEBUG, "CPU 0x%x\n", i);
+ printk(BIOS_DEBUG,
+ " smbase %zx entry %zx\n",
+ cpus[i].smbase, cpus[i].entry);
+ printk(BIOS_DEBUG,
+ " ss_start %zx code_end %zx\n",
+ cpus[i].ss_start, cpus[i].code_end);
+ seg_count++;
+ if (seg_count >= cpus_in_segment) {
+ printk(BIOS_DEBUG,
+ "-------------NEW CODE SEGMENT --------------\n");
+ seg_count = 0;
+ }
+ }
+ }
+ return 1;
}

-/* Place stacks in base -> base + size region, but ensure the stacks don't
- * overlap the staggered entry points. */
+/*
+ * This method expects the smm relocation map to be complete.
+ * This method does not read any HW registers, it simply uses a
+ * map that was created during SMM setup.
+ * input: cpu_num - cpu number which is used as an index into the
+ * map to return the smbase
+ */
+u32 smm_get_cpu_smbase(unsigned int cpu_num)
+{
+ if (cpu_num < CONFIG_MAX_CPUS) {
+ if (cpus[cpu_num].active)
+ return cpus[cpu_num].smbase;
+ }
+ return 0;
+}
+
+/*
+ * This method assumes that at least 1 CPU has been set up from
+ * which it will place other CPUs below its smbase ensuring that
+ * save state does not clobber the first CPUs init code segment. The init
+ * code which is the smm stub code is the same for all CPUs. They enter
+ * smm, setup stacks (based on their apic id), enter protected mode
+ * and then jump to the common smi handler. The stack is allocated
+ * at the beginning of smram (aka tseg base, not smbase). The stack
+ * pointer for each CPU is calculated by using its apic id
+ * (code is in smm_stub.s)
+ * Each entry point will now have the same stub code which, sets up the CPU
+ * stack, enters protected mode and then jumps to the smi handler. It is
+ * important to enter protected mode before the jump because the "jump to
+ * address" might be larger than the 20bit address supported by real mode.
+ * SMI entry right now is in real mode.
+ * input: smbase - this is the smbase of the first cpu not the smbase
+ * where tseg starts (aka smram_start). All CPUs code segment
+ * and stack will be below this point except for the common
+ * SMI handler which is one segment above
+ * input: num_cpus - number of cpus that need relocation including
+ * the first CPU (though its code is already loaded)
+ * input: top of stack (stacks work downward by default in Intel HW)
+ * output: return -1, if runtime smi code could not be installed. In
+ * this case SMM will not work and any SMI's generated will
+ * cause a CPU shutdown or general protection fault because
+ * the appropriate smi handling code was not installed
+ */
+
+static int smm_place_entry_code(uintptr_t smbase, unsigned int num_cpus,
+ unsigned int stack_top, const struct smm_loader_params *params)
+{
+ unsigned int i;
+ unsigned int size;
+ if (smm_create_map(smbase, num_cpus, params)) {
+ /*
+ * Ensure there was enough space and the last CPUs smbase
+ * did not encroach upon the stack. Stack top is smram start
+ * + size of stack.
+ */
+ if (cpus[num_cpus].active) {
+ if (cpus[num_cpus - 1].smbase +
+ params->smm_main_entry_offset < stack_top) {
+ printk(BIOS_ERR, "%s: stack encroachment\n", __func__);
+ printk(BIOS_ERR, "%s: smbase %zx, stack_top %x\n",
+ __func__, cpus[num_cpus].smbase, stack_top);
+ return 0;
+ }
+ }
+ } else {
+ printk(BIOS_ERR, "%s: unable to place smm entry code\n", __func__);
+ return 0;
+ }
+
+ printk(BIOS_INFO, "%s: smbase %zx, stack_top %x\n",
+ __func__, cpus[num_cpus-1].smbase, stack_top);
+
+ /* start at 1, the first CPU stub code is already there */
+ size = cpus[0].code_end - cpus[0].code_start;
+ for (i = 1; i < num_cpus; i++) {
+ memcpy((int *)cpus[i].code_start, (int *)cpus[0].code_start, size);
+ printk(BIOS_DEBUG,
+ "SMM Module: placing smm entry code at %zx, cpu # 0x%x\n",
+ cpus[i].code_start, i);
+ printk(BIOS_DEBUG, "%s: copying from %zx to %zx 0x%x bytes\n",
+ __func__, cpus[0].code_start, cpus[i].code_start, size);
+ }
+ return 1;
+}
+
+/*
+ * Place stacks in base -> base + size region, but ensure the stacks don't
+ * overlap the staggered entry points.
+ */
static void *smm_stub_place_stacks(char *base, size_t size,
struct smm_loader_params *params)
{
size_t total_stack_size;
char *stacks_top;

- if (params->stack_top != NULL)
- return params->stack_top;
-
/* If stack space is requested assume the space lives in the lower
* half of SMRAM. */
total_stack_size = params->per_cpu_stack_size *
params->num_concurrent_stacks;
+ printk(BIOS_DEBUG, "%s: cpus: %zx : stack space: needed -> %zx\n",
+ __func__, params->num_concurrent_stacks,
+ total_stack_size);
+ printk(BIOS_DEBUG, " available -> %zx : per_cpu_stack_size : %zx\n",
+ size, params->per_cpu_stack_size);

/* There has to be at least one stack user. */
if (params->num_concurrent_stacks < 1)
@@ -117,51 +291,53 @@

/* Stacks extend down to SMBASE */
stacks_top = &base[total_stack_size];
+ printk(BIOS_DEBUG, "%s: exit, stack_top %p\n", __func__, stacks_top);

return stacks_top;
}

-/* Place the staggered entry points for each CPU. The entry points are
+/*
+ * Place the staggered entry points for each CPU. The entry points are
* staggered by the per CPU SMM save state size extending down from
- * SMM_ENTRY_OFFSET. */
-static void smm_stub_place_staggered_entry_points(char *base,
+ * SMM_ENTRY_OFFSET.
+ */
+static int smm_stub_place_staggered_entry_points(char *base,
const struct smm_loader_params *params, const struct rmodule *smm_stub)
{
size_t stub_entry_offset;
-
+ int rc = 1;
stub_entry_offset = rmodule_entry_offset(smm_stub);
-
- /* If there are staggered entry points or the stub is not located
- * at the SMM entry point then jmp instructions need to be placed. */
+ /* Each CPU now has its own stub code, which enters protected mode,
+ * sets up the stack, and then jumps to common SMI handler
+ */
if (params->num_concurrent_save_states > 1 || stub_entry_offset != 0) {
- size_t num_entries;
-
- base += SMM_ENTRY_OFFSET;
- num_entries = params->num_concurrent_save_states;
- /* Adjust beginning entry and number of entries down since
- * the initial entry point doesn't need a jump sequence. */
- if (stub_entry_offset == 0) {
- base -= params->per_cpu_save_state_size;
- num_entries--;
- }
- smm_place_jmp_instructions(base,
- params->per_cpu_save_state_size,
- num_entries,
- rmodule_entry(smm_stub));
+ rc = smm_place_entry_code((unsigned int)base,
+ params->num_concurrent_save_states,
+ (unsigned int)params->stack_top, params);
}
+ return rc;
}

/*
* The stub setup code assumes it is completely contained within the
- * default SMRAM size (0x10000). There are potentially 3 regions to place
+ * default SMRAM size (0x10000) for the default SMI handler (entry at
+ * 0x30000), but no assumption should be made for the permanent SMI handler.
+ * The placement of CPU entry points for permanent handler are determined
+ * by the number of CPUs in the system and the amount of SMRAM.
+ * There are potentially 3 regions to place
* within the default SMRAM size:
* 1. Save state areas
* 2. Stub code
* 3. Stack areas
*
- * The save state and stack areas are treated as contiguous for the number of
- * concurrent areas requested. The save state always lives at the top of SMRAM
- * space, and the entry point is at offset 0x8000.
+ * The save state and smm stack are treated as contiguous for the number of
+ * concurrent areas requested. The save state always lives at the top of the
+ * the CPUS smbase (and the entry point is at offset 0x8000). This allows only a certain
+ * number of CPUs with staggered entry points until the save state area comes
+ * down far enough to overwrite/corrupt the entry code (stub code). Therefore,
+ * an SMM map is created to avoid this corruption, see smm_create_map() above.
+ * This module setup code works for the default (0x30000) SMM handler setup and the
+ * permanent SMM handler.
*/
static int smm_module_setup_stub(void *smbase, size_t smm_size,
struct smm_loader_params *params,
@@ -177,73 +353,67 @@
size_t i;
struct smm_stub_params *stub_params;
struct rmodule smm_stub;
-
+ unsigned int total_size_all;
base = smbase;
- size = SMM_DEFAULT_SIZE;
+ size = smm_size;

/* The number of concurrent stacks cannot exceed CONFIG_MAX_CPUS. */
- if (params->num_concurrent_stacks > CONFIG_MAX_CPUS)
+ if (params->num_concurrent_stacks > CONFIG_MAX_CPUS) {
+ printk(BIOS_ERR, "%s: not enough stacks\n", __func__);
return -1;
+ }

/* Fail if can't parse the smm stub rmodule. */
- if (rmodule_parse(&_binary_smmstub_start, &smm_stub))
+ if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
+ printk(BIOS_ERR, "%s: unable to parse smm stub\n", __func__);
return -1;
+ }

/* Adjust remaining size to account for save state. */
total_save_state_size = params->per_cpu_save_state_size *
params->num_concurrent_save_states;
- if (total_save_state_size > size)
+ if (total_save_state_size > size) {
+ printk(BIOS_ERR,
+ "%s: more state save space needed:need -> %zx:available->%zx\n",
+ __func__, total_save_state_size, size);
return -1;
+ }
+
size -= total_save_state_size;

/* The save state size encroached over the first SMM entry point. */
- if (size <= SMM_ENTRY_OFFSET)
+ if (size <= params->smm_main_entry_offset) {
+ printk(BIOS_ERR, "%s: encroachment over SMM entry point\n", __func__);
+ printk(BIOS_ERR, "%s: state save size: %zx : smm_entry_offset -> %x\n",
+ __func__, size, params->smm_main_entry_offset);
return -1;
+ }

/* Need a minimum stack size and alignment. */
if (params->per_cpu_stack_size <= SMM_MINIMUM_STACK_SIZE ||
- (params->per_cpu_stack_size & 3) != 0)
+ (params->per_cpu_stack_size & 3) != 0) {
+ printk(BIOS_ERR, "%s: need minimum stack size\n", __func__);
return -1;
+ }

smm_stub_loc = NULL;
smm_stub_size = rmodule_memory_size(&smm_stub);
stub_entry_offset = rmodule_entry_offset(&smm_stub);

- if (smm_stub_size > params->per_cpu_save_state_size) {
- printk(BIOS_ERR, "SMM Module: SMM stub size larger than save state size\n");
- printk(BIOS_ERR, "SMM Module: Staggered entry points will overlap stub\n");
- return -1;
- }
-
- /* Assume the stub is always small enough to live within upper half of
- * SMRAM region after the save state space has been allocated. */
- smm_stub_loc = &base[SMM_ENTRY_OFFSET];
-
- /* Adjust for jmp instruction sequence. */
- if (stub_entry_offset != 0) {
- size_t entry_sequence_size = sizeof(struct smm_entry_ins);
- /* Align up to 16 bytes. */
- entry_sequence_size = ALIGN_UP(entry_sequence_size, 16);
- smm_stub_loc += entry_sequence_size;
- smm_stub_size += entry_sequence_size;
- }
+ /* Put the stub at the main entry point */
+ smm_stub_loc = &base[params->smm_main_entry_offset];

/* Stub is too big to fit. */
- if (smm_stub_size > (size - SMM_ENTRY_OFFSET))
+ if (smm_stub_size > (size - params->smm_main_entry_offset)) {
+ printk(BIOS_ERR, "%s: stub is too big to fit\n", __func__);
return -1;
-
- /* The stacks, if requested, live in the lower half of SMRAM space. */
- size = SMM_ENTRY_OFFSET;
-
- /* Ensure stacks don't encroach onto staggered SMM
- * entry points. The staggered entry points extend
- * below SMM_ENTRY_OFFSET by the number of concurrent
- * save states - 1 and save state size. */
- if (params->num_concurrent_save_states > 1) {
- size -= total_save_state_size;
- size += params->per_cpu_save_state_size;
}

+ /* The stacks, if requested, live in the lower half of SMRAM space
+ * for default handler, but for relocated handler it lives at the beginning
+ * of SMRAM which is TSEG base
+ */
+ const total_stack_size = params->num_concurrent_stacks * params->per_cpu_stack_size;
/* Use the smbase as a proxy to know if we are installing the stub for relocation
* or for permanent handling. In case of relocation the SMM relocation stack will
* have been allocated on the ramstage heap and programmed in the smm loader params.
@@ -251,18 +421,25 @@
if (smbase == (void *)SMM_DEFAULT_BASE)
stacks_top = params->stack_top;
else
- /* Place the stacks in the lower half of SMRAM. */
- stacks_top = smm_stub_place_stacks(base, size, params);
+ stacks_top = smm_stub_place_stacks((char *)params->smram_start, size, params);

- if (stacks_top == NULL)
+ if (stacks_top == NULL) {
+ printk(BIOS_ERR, "%s: not enough space for stacks\n", __func__);
+ printk(BIOS_ERR, "%s: ....need -> %p : available -> %zx\n", __func__,
+ base, total_stack_size);
return -1;
-
+ }
+ params->stack_top = stacks_top;
/* Load the stub. */
- if (rmodule_load(smm_stub_loc, &smm_stub))
+ if (rmodule_load(smm_stub_loc, &smm_stub)) {
+ printk(BIOS_ERR, "%s: load module failed\n", __func__);
return -1;
+ }

- /* Place staggered entry points. */
- smm_stub_place_staggered_entry_points(base, params, &smm_stub);
+ if (!smm_stub_place_staggered_entry_points(base, params, &smm_stub)) {
+ printk(BIOS_ERR, "%s: staggered entry points failed\n", __func__);
+ return -1;
+ }

/* Setup the parameters for the stub code. */
stub_params = rmodule_parameters(&smm_stub);
@@ -276,7 +453,31 @@
stub_params->runtime.smm_size = smm_size;
stub_params->runtime.save_state_size = params->per_cpu_save_state_size;
stub_params->runtime.num_cpus = params->num_concurrent_stacks;
- stub_params->runtime.gnvs_ptr = (uintptr_t)acpi_get_gnvs();
+
+ printk(BIOS_DEBUG, "%s: stack_end = 0x%lx\n",
+ __func__, stub_params->stack_top - total_stack_size);
+ printk(BIOS_DEBUG,
+ "%s: stack_top = 0x%x\n", __func__, stub_params->stack_top);
+ printk(BIOS_DEBUG, "%s: stack_size = 0x%x\n",
+ __func__, stub_params->stack_size);
+ printk(BIOS_DEBUG, "%s: runtime.smbase = 0x%x\n",
+ __func__, stub_params->runtime.smbase);
+ printk(BIOS_DEBUG, "%s: runtime.start32_offset = 0x%x\n", __func__,
+ stub_params->runtime.start32_offset);
+ printk(BIOS_DEBUG, "%s: runtime.smm_size = 0x%zx\n",
+ __func__, smm_size);
+ printk(BIOS_DEBUG, "%s: per_cpu_save_state_size = 0x%x\n",
+ __func__, stub_params->runtime.save_state_size);
+ printk(BIOS_DEBUG, "%s: num_cpus = 0x%x\n", __func__,
+ stub_params->runtime.num_cpus);
+ printk(BIOS_DEBUG, "%s: total_save_state_size = 0x%x\n",
+ __func__, (stub_params->runtime.save_state_size *
+ stub_params->runtime.num_cpus));
+ total_size_all = stub_params->stack_size +
+ (stub_params->runtime.save_state_size *
+ stub_params->runtime.num_cpus);
+ printk(BIOS_DEBUG, "%s: total_size_all = 0x%x\n", __func__,
+ total_size_all);

/* Initialize the APIC id to CPU number table to be 1:1 */
for (i = 0; i < params->num_concurrent_stacks; i++)
@@ -287,7 +488,6 @@

printk(BIOS_DEBUG, "SMM Module: stub loaded at %p. Will call %p(%p)\n",
smm_stub_loc, params->handler, params->handler_arg);
-
return 0;
}

@@ -299,8 +499,8 @@
*/
int smm_setup_relocation_handler(struct smm_loader_params *params)
{
- void *smram = (void *)SMM_DEFAULT_BASE;
-
+ void *smram = (void *)(SMM_DEFAULT_BASE);
+ printk(BIOS_SPEW, "%s: enter\n", __func__);
/* There can't be more than 1 concurrent save state for the relocation
* handler because all CPUs default to 0x30000 as SMBASE. */
if (params->num_concurrent_save_states > 1)
@@ -315,27 +515,35 @@
if (params->num_concurrent_stacks == 0)
params->num_concurrent_stacks = CONFIG_MAX_CPUS;

+ params->smm_main_entry_offset = SMM_ENTRY_OFFSET;
+ params->smram_start = SMM_DEFAULT_BASE;
+ params->smram_end = SMM_DEFAULT_BASE + SMM_DEFAULT_SIZE;
return smm_module_setup_stub(smram, SMM_DEFAULT_SIZE,
- params, fxsave_area_relocation);
+ params, fxsave_area_relocation);
+ printk(BIOS_SPEW, "%s: exit\n", __func__);
}

-/* The SMM module is placed within the provided region in the following
+/*
+ *The SMM module is placed within the provided region in the following
* manner:
* +-----------------+ <- smram + size
* | BIOS resource |
* | list (STM) |
- * +-----------------+ <- smram + size - CONFIG_BIOS_RESOURCE_LIST_SIZE
- * | stacks |
- * +-----------------+ <- .. - total_stack_size
+ * +-----------------+
* | fxsave area |
- * +-----------------+ <- .. - total_stack_size - fxsave_size
+ * +-----------------+
+ * | smi handler |
* | ... |
- * +-----------------+ <- smram + handler_size + SMM_DEFAULT_SIZE
- * | handler |
- * +-----------------+ <- smram + SMM_DEFAULT_SIZE
- * | stub code |
- * +-----------------+ <- smram
- *
+ * +-----------------+ <- cpu0
+ * | stub code | <- cpu1
+ * | stub code | <- cpu2
+ * | stub code | <- cpu3, etc
+ * | |
+ * | |
+ * | |
+ * | stacks |
+ * +-----------------+ <- smram start
+
* It should be noted that this algorithm will not work for
* SMM_DEFAULT_SIZE SMRAM regions such as the A segment. This algorithm
* expects a region large enough to encompass the handler and stacks
@@ -350,12 +558,21 @@
size_t alignment_size;
size_t fxsave_size;
void *fxsave_area;
- size_t total_size;
+ size_t total_size = 0;
char *base;

if (size <= SMM_DEFAULT_SIZE)
return -1;

+ /* Load main SMI handler at the top of SMRAM
+ * everything else will go below
+ */
+ base = smram;
+ base += size;
+ params->smram_start = (uintptr_t)smram;
+ params->smram_end = params->smram_start + size;
+ params->smm_main_entry_offset = SMM_ENTRY_OFFSET;
+
/* Fail if can't parse the smm rmodule. */
if (rmodule_parse(&_binary_smm_start, &smm_mod))
return -1;
@@ -366,21 +583,30 @@

total_stack_size = params->per_cpu_stack_size *
params->num_concurrent_stacks;
+ total_size += total_stack_size;
+ /* Stacks are the base of SMRAM */
+ params->stack_top = smram + total_stack_size;

- /* Stacks start at the top of the region. */
- base = smram;
- base += size;
-
- if (CONFIG(STM))
+ /* MSEG starts at the top of SMRAM and works down */
+ if (CONFIG(STM)) {
base -= CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE;
+ total_size += CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE;
+ }

- params->stack_top = base;
+ /* FXSAVE goes below MSEG */
+ if (CONFIG(SSE)) {
+ fxsave_size = FXSAVE_SIZE * params->num_concurrent_stacks;
+ fxsave_area = base - fxsave_size;
+ base -= fxsave_size;
+ total_size += fxsave_size;
+ } else {
+ fxsave_size = 0;
+ fxsave_area = NULL;
+ }

- /* SMM module starts at offset SMM_DEFAULT_SIZE with the load alignment
- * taken into account. */
- base = smram;
- base += SMM_DEFAULT_SIZE;
handler_size = rmodule_memory_size(&smm_mod);
+ base -= handler_size;
+ total_size += handler_size;
module_alignment = rmodule_load_alignment(&smm_mod);
alignment_size = module_alignment -
((uintptr_t)base % module_alignment);
@@ -389,22 +615,20 @@
base += alignment_size;
}

- if (CONFIG(SSE)) {
- fxsave_size = FXSAVE_SIZE * params->num_concurrent_stacks;
- /* FXSAVE area below all the stacks stack. */
- fxsave_area = params->stack_top;
- fxsave_area -= total_stack_size + fxsave_size;
- } else {
- fxsave_size = 0;
- fxsave_area = NULL;
- }
+ printk(BIOS_DEBUG,
+ "%s: total_smm_space_needed %zx, available -> %zx\n",
+ __func__, total_size, size);

/* Does the required amount of memory exceed the SMRAM region size? */
- total_size = total_stack_size + handler_size;
- total_size += fxsave_size + SMM_DEFAULT_SIZE;
-
- if (total_size > size)
+ if (total_size > size) {
+ printk(BIOS_ERR, "%s: need more SMRAM\n", __func__);
return -1;
+ }
+ if (handler_size > SMM_CODE_SEGMENT_SIZE) {
+ printk(BIOS_ERR, "%s: increase SMM_CODE_SEGMENT_SIZE: handler_size = %zx\n",
+ __func__, handler_size);
+ return -1;
+ }

if (rmodule_load(base, &smm_mod))
return -1;
@@ -412,5 +636,33 @@
params->handler = rmodule_entry(&smm_mod);
params->handler_arg = rmodule_parameters(&smm_mod);

- return smm_module_setup_stub(smram, size, params, fxsave_area);
+ printk(BIOS_DEBUG, "%s: smram_start: 0x%p\n",
+ __func__, smram);
+ printk(BIOS_DEBUG, "%s: smram_end: %p\n",
+ __func__, smram + size);
+ printk(BIOS_DEBUG, "%s: stack_top: %p\n",
+ __func__, params->stack_top);
+ printk(BIOS_DEBUG, "%s: handler start %p\n",
+ __func__, params->handler);
+ printk(BIOS_DEBUG, "%s: handler_size %zx\n",
+ __func__, handler_size);
+ printk(BIOS_DEBUG, "%s: handler_arg %p\n",
+ __func__, params->handler_arg);
+ printk(BIOS_DEBUG, "%s: fxsave_area %p\n",
+ __func__, fxsave_area);
+ printk(BIOS_DEBUG, "%s: fxsave_size %zx\n",
+ __func__, fxsave_size);
+ printk(BIOS_DEBUG, "%s: CONFIG_MSEG_SIZE 0x%x\n",
+ __func__, CONFIG_MSEG_SIZE);
+ printk(BIOS_DEBUG, "%s: CONFIG_BIOS_RESOURCE_LIST_SIZE 0x%x\n",
+ __func__, CONFIG_BIOS_RESOURCE_LIST_SIZE);
+
+ /* CPU 0 smbase goes first, all other CPUs
+ * will be staggered below
+ */
+ base -= SMM_CODE_SEGMENT_SIZE;
+ printk(BIOS_DEBUG, "%s: cpu0 entry: %p\n",
+ __func__, base);
+ params->smm_entry = (uintptr_t)base + params->smm_main_entry_offset;
+ return smm_module_setup_stub(base, size, params, fxsave_area);
}
diff --git a/src/cpu/x86/smm/smm_module_loaderv2.c b/src/cpu/x86/smm/smm_module_loaderv2.c
deleted file mode 100644
index 54e46d4..0000000
--- a/src/cpu/x86/smm/smm_module_loaderv2.c
+++ /dev/null
@@ -1,668 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0-only */
-
-#include <stdint.h>
-#include <string.h>
-#include <rmodule.h>
-#include <cpu/x86/smm.h>
-#include <commonlib/helpers.h>
-#include <console/console.h>
-#include <security/intel/stm/SmmStm.h>
-
-#define FXSAVE_SIZE 512
-#define SMM_CODE_SEGMENT_SIZE 0x10000
-/* FXSAVE area during relocation. While it may not be strictly needed the
- SMM stub code relies on the FXSAVE area being non-zero to enable SSE
- instructions within SMM mode. */
-static uint8_t fxsave_area_relocation[CONFIG_MAX_CPUS][FXSAVE_SIZE]
-__attribute__((aligned(16)));
-
-/*
- * Components that make up the SMRAM:
- * 1. Save state - the total save state memory used
- * 2. Stack - stacks for the CPUs in the SMM handler
- * 3. Stub - SMM stub code for calling into handler
- * 4. Handler - C-based SMM handler.
- *
- * The components are assumed to consist of one consecutive region.
- */
-
-/* These parameters are used by the SMM stub code. A pointer to the params
- * is also passed to the C-base handler. */
-struct smm_stub_params {
- u32 stack_size;
- u32 stack_top;
- u32 c_handler;
- u32 c_handler_arg;
- u32 fxsave_area;
- u32 fxsave_area_size;
- struct smm_runtime runtime;
-} __packed;
-
-/*
- * The stub is the entry point that sets up protected mode and stacks for each
- * CPU. It then calls into the SMM handler module. It is encoded as an rmodule.
- */
-extern unsigned char _binary_smmstub_start[];
-
-/* Per CPU minimum stack size. */
-#define SMM_MINIMUM_STACK_SIZE 32
-
-struct cpu_smm_info {
- uint8_t active;
- uintptr_t smbase;
- uintptr_t entry;
- uintptr_t ss_start;
- uintptr_t code_start;
- uintptr_t code_end;
-};
-struct cpu_smm_info cpus[CONFIG_MAX_CPUS] = { 0 };
-
-/*
- * This method creates a map of all the CPU entry points, save state locations
- * and the beginning and end of code segments for each CPU. This map is used
- * during relocation to properly align as many CPUs that can fit into the SMRAM
- * region. For more information on how SMRAM works, refer to the latest Intel
- * developer's manuals (volume 3, chapter 34). SMRAM is divided up into the
- * following regions:
- * +-----------------+ Top of SMRAM
- * | | <- MSEG, FXSAVE
- * +-----------------+
- * | common |
- * | smi handler | 64K
- * | |
- * +-----------------+
- * | CPU 0 code seg |
- * +-----------------+
- * | CPU 1 code seg |
- * +-----------------+
- * | CPU x code seg |
- * +-----------------+
- * | |
- * | |
- * +-----------------+
- * | stacks |
- * +-----------------+ <- START of SMRAM
- *
- * The code below checks when a code segment is full and begins placing the remainder
- * CPUs in the lower segments. The entry point for each CPU is smbase + 0x8000
- * and save state is smbase + 0x8000 + (0x8000 - state save size). Save state
- * area grows downward into the CPUs entry point. Therefore staggering too many
- * CPUs in one 32K block will corrupt CPU0's entry code as the save states move
- * downward.
- * input : smbase of first CPU (all other CPUs
- * will go below this address)
- * input : num_cpus in the system. The map will
- * be created from 0 to num_cpus.
- */
-static int smm_create_map(uintptr_t smbase, unsigned int num_cpus,
- const struct smm_loader_params *params)
-{
- unsigned int i;
- struct rmodule smm_stub;
- unsigned int ss_size = params->per_cpu_save_state_size, stub_size;
- unsigned int smm_entry_offset = params->smm_main_entry_offset;
- unsigned int seg_count = 0, segments = 0, available;
- unsigned int cpus_in_segment = 0;
- unsigned int base = smbase;
-
- if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
- printk(BIOS_ERR, "%s: unable to get SMM module size\n", __func__);
- return 0;
- }
-
- stub_size = rmodule_memory_size(&smm_stub);
- /* How many CPUs can fit into one 64K segment? */
- available = 0xFFFF - smm_entry_offset - ss_size - stub_size;
- if (available > 0) {
- cpus_in_segment = available / ss_size;
- /* minimum segments needed will always be 1 */
- segments = num_cpus / cpus_in_segment + 1;
- printk(BIOS_DEBUG,
- "%s: cpus allowed in one segment %d\n", __func__, cpus_in_segment);
- printk(BIOS_DEBUG,
- "%s: min # of segments needed %d\n", __func__, segments);
- } else {
- printk(BIOS_ERR, "%s: not enough space in SMM to setup all CPUs\n", __func__);
- printk(BIOS_ERR, " save state & stub size need to be reduced\n");
- printk(BIOS_ERR, " or increase SMRAM size\n");
- return 0;
- }
-
- if (sizeof(cpus) / sizeof(struct cpu_smm_info) < num_cpus) {
- printk(BIOS_ERR,
- "%s: increase MAX_CPUS in Kconfig\n", __func__);
- return 0;
- }
-
- if (stub_size > ss_size) {
- printk(BIOS_ERR, "%s: Save state larger than SMM stub size\n", __func__);
- printk(BIOS_ERR, " Decrease stub size or increase the size allocated for the save state\n");
- return 0;
- }
-
- for (i = 0; i < num_cpus; i++) {
- cpus[i].smbase = base;
- cpus[i].entry = base + smm_entry_offset;
- cpus[i].ss_start = cpus[i].entry + (smm_entry_offset - ss_size);
- cpus[i].code_start = cpus[i].entry;
- cpus[i].code_end = cpus[i].entry + stub_size;
- cpus[i].active = 1;
- base -= ss_size;
- seg_count++;
- if (seg_count >= cpus_in_segment) {
- base -= smm_entry_offset;
- seg_count = 0;
- }
- }
-
- if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) {
- seg_count = 0;
- for (i = 0; i < num_cpus; i++) {
- printk(BIOS_DEBUG, "CPU 0x%x\n", i);
- printk(BIOS_DEBUG,
- " smbase %zx entry %zx\n",
- cpus[i].smbase, cpus[i].entry);
- printk(BIOS_DEBUG,
- " ss_start %zx code_end %zx\n",
- cpus[i].ss_start, cpus[i].code_end);
- seg_count++;
- if (seg_count >= cpus_in_segment) {
- printk(BIOS_DEBUG,
- "-------------NEW CODE SEGMENT --------------\n");
- seg_count = 0;
- }
- }
- }
- return 1;
-}
-
-/*
- * This method expects the smm relocation map to be complete.
- * This method does not read any HW registers, it simply uses a
- * map that was created during SMM setup.
- * input: cpu_num - cpu number which is used as an index into the
- * map to return the smbase
- */
-u32 smm_get_cpu_smbase(unsigned int cpu_num)
-{
- if (cpu_num < CONFIG_MAX_CPUS) {
- if (cpus[cpu_num].active)
- return cpus[cpu_num].smbase;
- }
- return 0;
-}
-
-/*
- * This method assumes that at least 1 CPU has been set up from
- * which it will place other CPUs below its smbase ensuring that
- * save state does not clobber the first CPUs init code segment. The init
- * code which is the smm stub code is the same for all CPUs. They enter
- * smm, setup stacks (based on their apic id), enter protected mode
- * and then jump to the common smi handler. The stack is allocated
- * at the beginning of smram (aka tseg base, not smbase). The stack
- * pointer for each CPU is calculated by using its apic id
- * (code is in smm_stub.s)
- * Each entry point will now have the same stub code which, sets up the CPU
- * stack, enters protected mode and then jumps to the smi handler. It is
- * important to enter protected mode before the jump because the "jump to
- * address" might be larger than the 20bit address supported by real mode.
- * SMI entry right now is in real mode.
- * input: smbase - this is the smbase of the first cpu not the smbase
- * where tseg starts (aka smram_start). All CPUs code segment
- * and stack will be below this point except for the common
- * SMI handler which is one segment above
- * input: num_cpus - number of cpus that need relocation including
- * the first CPU (though its code is already loaded)
- * input: top of stack (stacks work downward by default in Intel HW)
- * output: return -1, if runtime smi code could not be installed. In
- * this case SMM will not work and any SMI's generated will
- * cause a CPU shutdown or general protection fault because
- * the appropriate smi handling code was not installed
- */
-
-static int smm_place_entry_code(uintptr_t smbase, unsigned int num_cpus,
- unsigned int stack_top, const struct smm_loader_params *params)
-{
- unsigned int i;
- unsigned int size;
- if (smm_create_map(smbase, num_cpus, params)) {
- /*
- * Ensure there was enough space and the last CPUs smbase
- * did not encroach upon the stack. Stack top is smram start
- * + size of stack.
- */
- if (cpus[num_cpus].active) {
- if (cpus[num_cpus - 1].smbase +
- params->smm_main_entry_offset < stack_top) {
- printk(BIOS_ERR, "%s: stack encroachment\n", __func__);
- printk(BIOS_ERR, "%s: smbase %zx, stack_top %x\n",
- __func__, cpus[num_cpus].smbase, stack_top);
- return 0;
- }
- }
- } else {
- printk(BIOS_ERR, "%s: unable to place smm entry code\n", __func__);
- return 0;
- }
-
- printk(BIOS_INFO, "%s: smbase %zx, stack_top %x\n",
- __func__, cpus[num_cpus-1].smbase, stack_top);
-
- /* start at 1, the first CPU stub code is already there */
- size = cpus[0].code_end - cpus[0].code_start;
- for (i = 1; i < num_cpus; i++) {
- memcpy((int *)cpus[i].code_start, (int *)cpus[0].code_start, size);
- printk(BIOS_DEBUG,
- "SMM Module: placing smm entry code at %zx, cpu # 0x%x\n",
- cpus[i].code_start, i);
- printk(BIOS_DEBUG, "%s: copying from %zx to %zx 0x%x bytes\n",
- __func__, cpus[0].code_start, cpus[i].code_start, size);
- }
- return 1;
-}
-
-/*
- * Place stacks in base -> base + size region, but ensure the stacks don't
- * overlap the staggered entry points.
- */
-static void *smm_stub_place_stacks(char *base, size_t size,
- struct smm_loader_params *params)
-{
- size_t total_stack_size;
- char *stacks_top;
-
- /* If stack space is requested assume the space lives in the lower
- * half of SMRAM. */
- total_stack_size = params->per_cpu_stack_size *
- params->num_concurrent_stacks;
- printk(BIOS_DEBUG, "%s: cpus: %zx : stack space: needed -> %zx\n",
- __func__, params->num_concurrent_stacks,
- total_stack_size);
- printk(BIOS_DEBUG, " available -> %zx : per_cpu_stack_size : %zx\n",
- size, params->per_cpu_stack_size);
-
- /* There has to be at least one stack user. */
- if (params->num_concurrent_stacks < 1)
- return NULL;
-
- /* Total stack size cannot fit. */
- if (total_stack_size > size)
- return NULL;
-
- /* Stacks extend down to SMBASE */
- stacks_top = &base[total_stack_size];
- printk(BIOS_DEBUG, "%s: exit, stack_top %p\n", __func__, stacks_top);
-
- return stacks_top;
-}
-
-/*
- * Place the staggered entry points for each CPU. The entry points are
- * staggered by the per CPU SMM save state size extending down from
- * SMM_ENTRY_OFFSET.
- */
-static int smm_stub_place_staggered_entry_points(char *base,
- const struct smm_loader_params *params, const struct rmodule *smm_stub)
-{
- size_t stub_entry_offset;
- int rc = 1;
- stub_entry_offset = rmodule_entry_offset(smm_stub);
- /* Each CPU now has its own stub code, which enters protected mode,
- * sets up the stack, and then jumps to common SMI handler
- */
- if (params->num_concurrent_save_states > 1 || stub_entry_offset != 0) {
- rc = smm_place_entry_code((unsigned int)base,
- params->num_concurrent_save_states,
- (unsigned int)params->stack_top, params);
- }
- return rc;
-}
-
-/*
- * The stub setup code assumes it is completely contained within the
- * default SMRAM size (0x10000) for the default SMI handler (entry at
- * 0x30000), but no assumption should be made for the permanent SMI handler.
- * The placement of CPU entry points for permanent handler are determined
- * by the number of CPUs in the system and the amount of SMRAM.
- * There are potentially 3 regions to place
- * within the default SMRAM size:
- * 1. Save state areas
- * 2. Stub code
- * 3. Stack areas
- *
- * The save state and smm stack are treated as contiguous for the number of
- * concurrent areas requested. The save state always lives at the top of the
- * the CPUS smbase (and the entry point is at offset 0x8000). This allows only a certain
- * number of CPUs with staggered entry points until the save state area comes
- * down far enough to overwrite/corrupt the entry code (stub code). Therefore,
- * an SMM map is created to avoid this corruption, see smm_create_map() above.
- * This module setup code works for the default (0x30000) SMM handler setup and the
- * permanent SMM handler.
- */
-static int smm_module_setup_stub(void *smbase, size_t smm_size,
- struct smm_loader_params *params,
- void *fxsave_area)
-{
- size_t total_save_state_size;
- size_t smm_stub_size;
- size_t stub_entry_offset;
- char *smm_stub_loc;
- void *stacks_top;
- size_t size;
- char *base;
- size_t i;
- struct smm_stub_params *stub_params;
- struct rmodule smm_stub;
- unsigned int total_size_all;
- base = smbase;
- size = smm_size;
-
- /* The number of concurrent stacks cannot exceed CONFIG_MAX_CPUS. */
- if (params->num_concurrent_stacks > CONFIG_MAX_CPUS) {
- printk(BIOS_ERR, "%s: not enough stacks\n", __func__);
- return -1;
- }
-
- /* Fail if can't parse the smm stub rmodule. */
- if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
- printk(BIOS_ERR, "%s: unable to parse smm stub\n", __func__);
- return -1;
- }
-
- /* Adjust remaining size to account for save state. */
- total_save_state_size = params->per_cpu_save_state_size *
- params->num_concurrent_save_states;
- if (total_save_state_size > size) {
- printk(BIOS_ERR,
- "%s: more state save space needed:need -> %zx:available->%zx\n",
- __func__, total_save_state_size, size);
- return -1;
- }
-
- size -= total_save_state_size;
-
- /* The save state size encroached over the first SMM entry point. */
- if (size <= params->smm_main_entry_offset) {
- printk(BIOS_ERR, "%s: encroachment over SMM entry point\n", __func__);
- printk(BIOS_ERR, "%s: state save size: %zx : smm_entry_offset -> %x\n",
- __func__, size, params->smm_main_entry_offset);
- return -1;
- }
-
- /* Need a minimum stack size and alignment. */
- if (params->per_cpu_stack_size <= SMM_MINIMUM_STACK_SIZE ||
- (params->per_cpu_stack_size & 3) != 0) {
- printk(BIOS_ERR, "%s: need minimum stack size\n", __func__);
- return -1;
- }
-
- smm_stub_loc = NULL;
- smm_stub_size = rmodule_memory_size(&smm_stub);
- stub_entry_offset = rmodule_entry_offset(&smm_stub);
-
- /* Put the stub at the main entry point */
- smm_stub_loc = &base[params->smm_main_entry_offset];
-
- /* Stub is too big to fit. */
- if (smm_stub_size > (size - params->smm_main_entry_offset)) {
- printk(BIOS_ERR, "%s: stub is too big to fit\n", __func__);
- return -1;
- }
-
- /* The stacks, if requested, live in the lower half of SMRAM space
- * for default handler, but for relocated handler it lives at the beginning
- * of SMRAM which is TSEG base
- */
- const total_stack_size = params->num_concurrent_stacks * params->per_cpu_stack_size;
- /* Use the smbase as a proxy to know if we are installing the stub for relocation
- * or for permanent handling. In case of relocation the SMM relocation stack will
- * have been allocated on the ramstage heap and programmed in the smm loader params.
- */
- if (smbase == (void *)SMM_DEFAULT_BASE)
- stacks_top = params->stack_top;
- else
- stacks_top = smm_stub_place_stacks((char *)params->smram_start, size, params);
-
- if (stacks_top == NULL) {
- printk(BIOS_ERR, "%s: not enough space for stacks\n", __func__);
- printk(BIOS_ERR, "%s: ....need -> %p : available -> %zx\n", __func__,
- base, total_stack_size);
- return -1;
- }
- params->stack_top = stacks_top;
- /* Load the stub. */
- if (rmodule_load(smm_stub_loc, &smm_stub)) {
- printk(BIOS_ERR, "%s: load module failed\n", __func__);
- return -1;
- }
-
- if (!smm_stub_place_staggered_entry_points(base, params, &smm_stub)) {
- printk(BIOS_ERR, "%s: staggered entry points failed\n", __func__);
- return -1;
- }
-
- /* Setup the parameters for the stub code. */
- stub_params = rmodule_parameters(&smm_stub);
- stub_params->stack_top = (uintptr_t)stacks_top;
- stub_params->stack_size = params->per_cpu_stack_size;
- stub_params->c_handler = (uintptr_t)params->handler;
- stub_params->c_handler_arg = (uintptr_t)params->handler_arg;
- stub_params->fxsave_area = (uintptr_t)fxsave_area;
- stub_params->fxsave_area_size = FXSAVE_SIZE;
- stub_params->runtime.smbase = (uintptr_t)smbase;
- stub_params->runtime.smm_size = smm_size;
- stub_params->runtime.save_state_size = params->per_cpu_save_state_size;
- stub_params->runtime.num_cpus = params->num_concurrent_stacks;
-
- printk(BIOS_DEBUG, "%s: stack_end = 0x%lx\n",
- __func__, stub_params->stack_top - total_stack_size);
- printk(BIOS_DEBUG,
- "%s: stack_top = 0x%x\n", __func__, stub_params->stack_top);
- printk(BIOS_DEBUG, "%s: stack_size = 0x%x\n",
- __func__, stub_params->stack_size);
- printk(BIOS_DEBUG, "%s: runtime.smbase = 0x%x\n",
- __func__, stub_params->runtime.smbase);
- printk(BIOS_DEBUG, "%s: runtime.start32_offset = 0x%x\n", __func__,
- stub_params->runtime.start32_offset);
- printk(BIOS_DEBUG, "%s: runtime.smm_size = 0x%zx\n",
- __func__, smm_size);
- printk(BIOS_DEBUG, "%s: per_cpu_save_state_size = 0x%x\n",
- __func__, stub_params->runtime.save_state_size);
- printk(BIOS_DEBUG, "%s: num_cpus = 0x%x\n", __func__,
- stub_params->runtime.num_cpus);
- printk(BIOS_DEBUG, "%s: total_save_state_size = 0x%x\n",
- __func__, (stub_params->runtime.save_state_size *
- stub_params->runtime.num_cpus));
- total_size_all = stub_params->stack_size +
- (stub_params->runtime.save_state_size *
- stub_params->runtime.num_cpus);
- printk(BIOS_DEBUG, "%s: total_size_all = 0x%x\n", __func__,
- total_size_all);
-
- /* Initialize the APIC id to CPU number table to be 1:1 */
- for (i = 0; i < params->num_concurrent_stacks; i++)
- stub_params->runtime.apic_id_to_cpu[i] = i;
-
- /* Allow the initiator to manipulate SMM stub parameters. */
- params->runtime = &stub_params->runtime;
-
- printk(BIOS_DEBUG, "SMM Module: stub loaded at %p. Will call %p(%p)\n",
- smm_stub_loc, params->handler, params->handler_arg);
- return 0;
-}
-
-/*
- * smm_setup_relocation_handler assumes the callback is already loaded in
- * memory. i.e. Another SMM module isn't chained to the stub. The other
- * assumption is that the stub will be entered from the default SMRAM
- * location: 0x30000 -> 0x40000.
- */
-int smm_setup_relocation_handler(struct smm_loader_params *params)
-{
- void *smram = (void *)(SMM_DEFAULT_BASE);
- printk(BIOS_SPEW, "%s: enter\n", __func__);
- /* There can't be more than 1 concurrent save state for the relocation
- * handler because all CPUs default to 0x30000 as SMBASE. */
- if (params->num_concurrent_save_states > 1)
- return -1;
-
- /* A handler has to be defined to call for relocation. */
- if (params->handler == NULL)
- return -1;
-
- /* Since the relocation handler always uses stack, adjust the number
- * of concurrent stack users to be CONFIG_MAX_CPUS. */
- if (params->num_concurrent_stacks == 0)
- params->num_concurrent_stacks = CONFIG_MAX_CPUS;
-
- params->smm_main_entry_offset = SMM_ENTRY_OFFSET;
- params->smram_start = SMM_DEFAULT_BASE;
- params->smram_end = SMM_DEFAULT_BASE + SMM_DEFAULT_SIZE;
- return smm_module_setup_stub(smram, SMM_DEFAULT_SIZE,
- params, fxsave_area_relocation);
- printk(BIOS_SPEW, "%s: exit\n", __func__);
-}
-
-/*
- *The SMM module is placed within the provided region in the following
- * manner:
- * +-----------------+ <- smram + size
- * | BIOS resource |
- * | list (STM) |
- * +-----------------+
- * | fxsave area |
- * +-----------------+
- * | smi handler |
- * | ... |
- * +-----------------+ <- cpu0
- * | stub code | <- cpu1
- * | stub code | <- cpu2
- * | stub code | <- cpu3, etc
- * | |
- * | |
- * | |
- * | stacks |
- * +-----------------+ <- smram start
-
- * It should be noted that this algorithm will not work for
- * SMM_DEFAULT_SIZE SMRAM regions such as the A segment. This algorithm
- * expects a region large enough to encompass the handler and stacks
- * as well as the SMM_DEFAULT_SIZE.
- */
-int smm_load_module(void *smram, size_t size, struct smm_loader_params *params)
-{
- struct rmodule smm_mod;
- size_t total_stack_size;
- size_t handler_size;
- size_t module_alignment;
- size_t alignment_size;
- size_t fxsave_size;
- void *fxsave_area;
- size_t total_size = 0;
- char *base;
-
- if (size <= SMM_DEFAULT_SIZE)
- return -1;
-
- /* Load main SMI handler at the top of SMRAM
- * everything else will go below
- */
- base = smram;
- base += size;
- params->smram_start = (uintptr_t)smram;
- params->smram_end = params->smram_start + size;
- params->smm_main_entry_offset = SMM_ENTRY_OFFSET;
-
- /* Fail if can't parse the smm rmodule. */
- if (rmodule_parse(&_binary_smm_start, &smm_mod))
- return -1;
-
- /* Clear SMM region */
- if (CONFIG(DEBUG_SMI))
- memset(smram, 0xcd, size);
-
- total_stack_size = params->per_cpu_stack_size *
- params->num_concurrent_stacks;
- total_size += total_stack_size;
- /* Stacks are the base of SMRAM */
- params->stack_top = smram + total_stack_size;
-
- /* MSEG starts at the top of SMRAM and works down */
- if (CONFIG(STM)) {
- base -= CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE;
- total_size += CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE;
- }
-
- /* FXSAVE goes below MSEG */
- if (CONFIG(SSE)) {
- fxsave_size = FXSAVE_SIZE * params->num_concurrent_stacks;
- fxsave_area = base - fxsave_size;
- base -= fxsave_size;
- total_size += fxsave_size;
- } else {
- fxsave_size = 0;
- fxsave_area = NULL;
- }
-
- handler_size = rmodule_memory_size(&smm_mod);
- base -= handler_size;
- total_size += handler_size;
- module_alignment = rmodule_load_alignment(&smm_mod);
- alignment_size = module_alignment -
- ((uintptr_t)base % module_alignment);
- if (alignment_size != module_alignment) {
- handler_size += alignment_size;
- base += alignment_size;
- }
-
- printk(BIOS_DEBUG,
- "%s: total_smm_space_needed %zx, available -> %zx\n",
- __func__, total_size, size);
-
- /* Does the required amount of memory exceed the SMRAM region size? */
- if (total_size > size) {
- printk(BIOS_ERR, "%s: need more SMRAM\n", __func__);
- return -1;
- }
- if (handler_size > SMM_CODE_SEGMENT_SIZE) {
- printk(BIOS_ERR, "%s: increase SMM_CODE_SEGMENT_SIZE: handler_size = %zx\n",
- __func__, handler_size);
- return -1;
- }
-
- if (rmodule_load(base, &smm_mod))
- return -1;
-
- params->handler = rmodule_entry(&smm_mod);
- params->handler_arg = rmodule_parameters(&smm_mod);
-
- printk(BIOS_DEBUG, "%s: smram_start: 0x%p\n",
- __func__, smram);
- printk(BIOS_DEBUG, "%s: smram_end: %p\n",
- __func__, smram + size);
- printk(BIOS_DEBUG, "%s: stack_top: %p\n",
- __func__, params->stack_top);
- printk(BIOS_DEBUG, "%s: handler start %p\n",
- __func__, params->handler);
- printk(BIOS_DEBUG, "%s: handler_size %zx\n",
- __func__, handler_size);
- printk(BIOS_DEBUG, "%s: handler_arg %p\n",
- __func__, params->handler_arg);
- printk(BIOS_DEBUG, "%s: fxsave_area %p\n",
- __func__, fxsave_area);
- printk(BIOS_DEBUG, "%s: fxsave_size %zx\n",
- __func__, fxsave_size);
- printk(BIOS_DEBUG, "%s: CONFIG_MSEG_SIZE 0x%x\n",
- __func__, CONFIG_MSEG_SIZE);
- printk(BIOS_DEBUG, "%s: CONFIG_BIOS_RESOURCE_LIST_SIZE 0x%x\n",
- __func__, CONFIG_BIOS_RESOURCE_LIST_SIZE);
-
- /* CPU 0 smbase goes first, all other CPUs
- * will be staggered below
- */
- base -= SMM_CODE_SEGMENT_SIZE;
- printk(BIOS_DEBUG, "%s: cpu0 entry: %p\n",
- __func__, base);
- params->smm_entry = (uintptr_t)base + params->smm_main_entry_offset;
- return smm_module_setup_stub(base, size, params, fxsave_area);
-}
diff --git a/src/include/cpu/x86/smm.h b/src/include/cpu/x86/smm.h
index 1073d03..7491d95 100644
--- a/src/include/cpu/x86/smm.h
+++ b/src/include/cpu/x86/smm.h
@@ -128,7 +128,6 @@
* into this field so the code doing the loading can manipulate the
* runtime's assumptions. e.g. updating the APIC id to CPU map to
* handle sparse APIC id space.
- * The following parameters are only used when X86_SMM_LOADER_VERSION2 is enabled.
* - smm_entry - entry address of first CPU thread, all others will be tiled
* below this address.
* - smm_main_entry_offset - default entry offset (e.g 0x8000)
@@ -148,22 +147,16 @@

struct smm_runtime *runtime;

- /* The following are only used by X86_SMM_LOADER_VERSION2 */
-#if CONFIG(X86_SMM_LOADER_VERSION2)
unsigned int smm_entry;
unsigned int smm_main_entry_offset;
unsigned int smram_start;
unsigned int smram_end;
-#endif
};

/* Both of these return 0 on success, < 0 on failure. */
int smm_setup_relocation_handler(struct smm_loader_params *params);
int smm_load_module(void *smram, size_t size, struct smm_loader_params *params);
-
-#if CONFIG(X86_SMM_LOADER_VERSION2)
u32 smm_get_cpu_smbase(unsigned int cpu_num);
-#endif

/* Backup and restore default SMM region. */
void *backup_default_smm_area(void);

To view, visit change 47073. To unsubscribe, or for help writing mail filters, visit settings.

Gerrit-Project: coreboot
Gerrit-Branch: master
Gerrit-Change-Id: If52e38ebd2baf4fc80d433e65626c537c0c1f1aa
Gerrit-Change-Number: 47073
Gerrit-PatchSet: 1
Gerrit-Owner: Arthur Heymans <arthur@aheymans.xyz>
Gerrit-Reviewer: Martin Roth <martinroth@google.com>
Gerrit-Reviewer: Patrick Georgi <pgeorgi@google.com>
Gerrit-MessageType: newchange